-
class numpy.poly1d(c_or_r, r=0, variable=None)
[source] -
A one-dimensional polynomial class.
A convenience class, used to encapsulate ?natural? operations on polynomials so that said operations may take on their customary form in code (see Examples).
Parameters: c_or_r : array_like
The polynomial?s coefficients, in decreasing powers, or if the value of the second parameter is True, the polynomial?s roots (values where the polynomial evaluates to 0). For example,
poly1d([1, 2, 3])
returns an object that represents, whereas
poly1d([1, 2, 3], True)
returns one that represents.
r : bool, optional
If True,
c_or_r
specifies the polynomial?s roots; the default is False.variable : str, optional
Changes the variable used when printing
p
fromx
tovariable
(see Examples).Examples
Construct the polynomial
:
1234>>> p
=
np.poly1d([
1
,
2
,
3
])
>>>
print
(np.poly1d(p))
2
1
x
+
2
x
+
3
Evaluate the polynomial at
:
12>>> p(
0.5
)
4.25
Find the roots:
1234>>> p.r
array([
-
1.
+
1.41421356j
,
-
1.
-
1.41421356j
])
>>> p(p.r)
array([
-
4.44089210e
-
16
+
0.j
,
-
4.44089210e
-
16
+
0.j
])
These numbers in the previous line represent (0, 0) to machine precision
Show the coefficients:
12>>> p.c
array([
1
,
2
,
3
])
Display the order (the leading zero-coefficients are removed):
12>>> p.order
2
Show the coefficient of the k-th power in the polynomial (which is equivalent to
p.c[-(i+1)]
):12>>> p[
1
]
2
Polynomials can be added, subtracted, multiplied, and divided (returns quotient and remainder):
12>>> p
*
p
poly1d([
1
,
4
,
10
,
12
,
9
])
12>>> (p
*
*
3
+
4
)
/
p
(poly1d([
1.
,
4.
,
10.
,
12.
,
9.
]), poly1d([
4.
]))
asarray(p)
gives the coefficient array, so polynomials can be used in all functions that accept arrays:12>>> p
*
*
2
# square of polynomial
poly1d([
1
,
4
,
10
,
12
,
9
])
12>>> np.square(p)
# square of individual coefficients
array([
1
,
4
,
9
])
The variable used in the string representation of
p
can be modified, using thevariable
parameter:1234>>> p
=
np.poly1d([
1
,
2
,
3
], variable
=
'z'
)
>>>
print
(p)
2
1
z
+
2
z
+
3
Construct a polynomial from its roots:
12>>> np.poly1d([
1
,
2
],
True
)
poly1d([
1
,
-
3
,
2
])
This is the same polynomial as obtained by:
12>>> np.poly1d([
1
,
-
1
])
*
np.poly1d([
1
,
-
2
])
poly1d([
1
,
-
3
,
2
])
Attributes
coeffs order variable Methods
__call__
(val)deriv
([m])Return a derivative of this polynomial. integ
([m, k])Return an antiderivative (indefinite integral) of this polynomial.
numpy.poly1d()

2025-01-10 15:47:30
Please login to continue.