-
numpy.trapz(y, x=None, dx=1.0, axis=-1)
[source] -
Integrate along the given axis using the composite trapezoidal rule.
Integrate
y
(x
) along given axis.Parameters: y : array_like
Input array to integrate.
x : array_like, optional
The sample points corresponding to the
y
values. Ifx
is None, the sample points are assumed to be evenly spaceddx
apart. The default is None.dx : scalar, optional
The spacing between sample points when
x
is None. The default is 1.axis : int, optional
The axis along which to integrate.
Returns: trapz : float
Definite integral as approximated by trapezoidal rule.
Notes
Image [R287] illustrates trapezoidal rule ? y-axis locations of points will be taken from
y
array, by default x-axis distances between points will be 1.0, alternatively they can be provided withx
array or withdx
scalar. Return value will be equal to combined area under the red lines.References
[R286] Wikipedia page: http://en.wikipedia.org/wiki/Trapezoidal_rule [R287] (1, 2) Illustration image: http://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png Examples
1234567891011121314>>> np.trapz([
1
,
2
,
3
])
4.0
>>> np.trapz([
1
,
2
,
3
], x
=
[
4
,
6
,
8
])
8.0
>>> np.trapz([
1
,
2
,
3
], dx
=
2
)
8.0
>>> a
=
np.arange(
6
).reshape(
2
,
3
)
>>> a
array([[
0
,
1
,
2
],
[
3
,
4
,
5
]])
>>> np.trapz(a, axis
=
0
)
array([
1.5
,
2.5
,
3.5
])
>>> np.trapz(a, axis
=
1
)
array([
2.
,
8.
])
numpy.trapz()

2025-01-10 15:47:30
Please login to continue.