corner_subpix
-
skimage.feature.corner_subpix(image, corners, window_size=11, alpha=0.99)
[source] -
Determine subpixel position of corners.
A statistical test decides whether the corner is defined as the intersection of two edges or a single peak. Depending on the classification result, the subpixel corner location is determined based on the local covariance of the grey-values. If the significance level for either statistical test is not sufficient, the corner cannot be classified, and the output subpixel position is set to NaN.
Parameters: image : ndarray
Input image.
corners : (N, 2) ndarray
Corner coordinates
(row, col)
.window_size : int, optional
Search window size for subpixel estimation.
alpha : float, optional
Significance level for corner classification.
Returns: positions : (N, 2) ndarray
Subpixel corner positions. NaN for “not classified” corners.
References
[R142] http://www.ipb.uni-bonn.de/uploads/tx_ikgpublication/ foerstner87.fast.pdf [R143] http://en.wikipedia.org/wiki/Corner_detection Examples
12345678910111213141516171819>>>
from
skimage.feature
import
corner_harris, corner_peaks, corner_subpix
>>> img
=
np.zeros((
10
,
10
))
>>> img[:
5
, :
5
]
=
1
>>> img[
5
:,
5
:]
=
1
>>> img.astype(
int
)
array([[
1
,
1
,
1
,
1
,
1
,
0
,
0
,
0
,
0
,
0
],
[
1
,
1
,
1
,
1
,
1
,
0
,
0
,
0
,
0
,
0
],
[
1
,
1
,
1
,
1
,
1
,
0
,
0
,
0
,
0
,
0
],
[
1
,
1
,
1
,
1
,
1
,
0
,
0
,
0
,
0
,
0
],
[
1
,
1
,
1
,
1
,
1
,
0
,
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
,
0
,
1
,
1
,
1
,
1
,
1
],
[
0
,
0
,
0
,
0
,
0
,
1
,
1
,
1
,
1
,
1
],
[
0
,
0
,
0
,
0
,
0
,
1
,
1
,
1
,
1
,
1
],
[
0
,
0
,
0
,
0
,
0
,
1
,
1
,
1
,
1
,
1
],
[
0
,
0
,
0
,
0
,
0
,
1
,
1
,
1
,
1
,
1
]])
>>> coords
=
corner_peaks(corner_harris(img), min_distance
=
2
)
>>> coords_subpix
=
corner_subpix(img, coords, window_size
=
7
)
>>> coords_subpix
array([[
4.5
,
4.5
]])
Please login to continue.