match-template

match_template

skimage.feature.match_template(image, template, pad_input=False, mode='constant', constant_values=0) [source]

Match a template to a 2-D or 3-D image using normalized correlation.

The output is an array with values between -1.0 and 1.0. The value at a given position corresponds to the correlation coefficient between the image and the template.

For pad_input=True matches correspond to the center and otherwise to the top-left corner of the template. To find the best match you must search for peaks in the response (output) image.

Parameters:

image : (M, N[, D]) array

2-D or 3-D input image.

template : (m, n[, d]) array

Template to locate. It must be (m <= M, n <= N[, d <= D]).

pad_input : bool

If True, pad image so that output is the same size as the image, and output values correspond to the template center. Otherwise, the output is an array with shape (M - m + 1, N - n + 1) for an (M, N) image and an (m, n) template, and matches correspond to origin (top-left corner) of the template.

mode : see numpy.pad, optional

Padding mode.

constant_values : see numpy.pad, optional

Constant values used in conjunction with mode='constant'.

Returns:

output : array

Response image with correlation coefficients.

References

[R154] Briechle and Hanebeck, “Template Matching using Fast Normalized Cross Correlation”, Proceedings of the SPIE (2001).
[R155] J. P. Lewis, “Fast Normalized Cross-Correlation”, Industrial Light and Magic.

Examples

>>> template = np.zeros((3, 3))
>>> template[1, 1] = 1
>>> template
array([[ 0.,  0.,  0.],
       [ 0.,  1.,  0.],
       [ 0.,  0.,  0.]])
>>> image = np.zeros((6, 6))
>>> image[1, 1] = 1
>>> image[4, 4] = -1
>>> image
array([[ 0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  1.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0., -1.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.]])
>>> result = match_template(image, template)
>>> np.round(result, 3)
array([[ 1.   , -0.125,  0.   ,  0.   ],
       [-0.125, -0.125,  0.   ,  0.   ],
       [ 0.   ,  0.   ,  0.125,  0.125],
       [ 0.   ,  0.   ,  0.125, -1.   ]], dtype=float32)
>>> result = match_template(image, template, pad_input=True)
>>> np.round(result, 3)
array([[-0.125, -0.125, -0.125,  0.   ,  0.   ,  0.   ],
       [-0.125,  1.   , -0.125,  0.   ,  0.   ,  0.   ],
       [-0.125, -0.125, -0.125,  0.   ,  0.   ,  0.   ],
       [ 0.   ,  0.   ,  0.   ,  0.125,  0.125,  0.125],
       [ 0.   ,  0.   ,  0.   ,  0.125, -1.   ,  0.125],
       [ 0.   ,  0.   ,  0.   ,  0.125,  0.125,  0.125]], dtype=float32)
doc_scikit_image
2017-01-12 17:21:56
Comments
Leave a Comment

Please login to continue.