This example is meant to illustrate situations where k-means will produce unintuitive and possibly unexpected clusters. In the first three plots, the input data does not conform to some implicit assumption that k-means makes and undesirable clusters are produced as a result. In the last plot, k-means returns intuitive clusters despite unevenly sized blobs.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | print (__doc__) # Author: Phil Roth <mr.phil.roth@gmail.com> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import make_blobs plt.figure(figsize = ( 12 , 12 )) n_samples = 1500 random_state = 170 X, y = make_blobs(n_samples = n_samples, random_state = random_state) # Incorrect number of clusters y_pred = KMeans(n_clusters = 2 , random_state = random_state).fit_predict(X) plt.subplot( 221 ) plt.scatter(X[:, 0 ], X[:, 1 ], c = y_pred) plt.title( "Incorrect Number of Blobs" ) # Anisotropicly distributed data transformation = [[ 0.60834549 , - 0.63667341 ], [ - 0.40887718 , 0.85253229 ]] X_aniso = np.dot(X, transformation) y_pred = KMeans(n_clusters = 3 , random_state = random_state).fit_predict(X_aniso) plt.subplot( 222 ) plt.scatter(X_aniso[:, 0 ], X_aniso[:, 1 ], c = y_pred) plt.title( "Anisotropicly Distributed Blobs" ) # Different variance X_varied, y_varied = make_blobs(n_samples = n_samples, cluster_std = [ 1.0 , 2.5 , 0.5 ], random_state = random_state) y_pred = KMeans(n_clusters = 3 , random_state = random_state).fit_predict(X_varied) plt.subplot( 223 ) plt.scatter(X_varied[:, 0 ], X_varied[:, 1 ], c = y_pred) plt.title( "Unequal Variance" ) # Unevenly sized blobs X_filtered = np.vstack((X[y = = 0 ][: 500 ], X[y = = 1 ][: 100 ], X[y = = 2 ][: 10 ])) y_pred = KMeans(n_clusters = 3 , random_state = random_state).fit_predict(X_filtered) plt.subplot( 224 ) plt.scatter(X_filtered[:, 0 ], X_filtered[:, 1 ], c = y_pred) plt.title( "Unevenly Sized Blobs" ) plt.show() |
Total running time of the script: (0 minutes 0.353 seconds)
Download Python source code:
plot_kmeans_assumptions.py
Download IPython notebook:
plot_kmeans_assumptions.ipynb
Please login to continue.