-
sklearn.metrics.zero_one_loss(y_true, y_pred, normalize=True, sample_weight=None)
[source] -
Zero-one classification loss.
If normalize is
True
, return the fraction of misclassifications (float), else it returns the number of misclassifications (int). The best performance is 0.Read more in the User Guide.
Parameters: y_true : 1d array-like, or label indicator array / sparse matrix
Ground truth (correct) labels.
y_pred : 1d array-like, or label indicator array / sparse matrix
Predicted labels, as returned by a classifier.
normalize : bool, optional (default=True)
If
False
, return the number of misclassifications. Otherwise, return the fraction of misclassifications.sample_weight : array-like of shape = [n_samples], optional
Sample weights.
Returns: loss : float or int,
If
normalize == True
, return the fraction of misclassifications (float), else it returns the number of misclassifications (int).See also
Notes
In multilabel classification, the zero_one_loss function corresponds to the subset zero-one loss: for each sample, the entire set of labels must be correctly predicted, otherwise the loss for that sample is equal to one.
Examples
1234567>>>
from
sklearn.metrics
import
zero_one_loss
>>> y_pred
=
[
1
,
2
,
3
,
4
]
>>> y_true
=
[
2
,
2
,
3
,
4
]
>>> zero_one_loss(y_true, y_pred)
0.25
>>> zero_one_loss(y_true, y_pred, normalize
=
False
)
1
In the multilabel case with binary label indicators:
12>>> zero_one_loss(np.array([[
0
,
1
], [
1
,
1
]]), np.ones((
2
,
2
)))
0.5
sklearn.metrics.zero_one_loss()
Examples using

2025-01-10 15:47:30
Please login to continue.