Prior to the introduction of TypedArray
in ECMAScript 2015 (ES6), the JavaScript language had no mechanism for reading or manipulating streams of binary data. The Buffer
class was introduced as part of the Node.js API to make it possible to interact with octet streams in the context of things like TCP streams and file system operations.
Now that TypedArray
has been added in ES6, the Buffer
class implements the Uint8Array
API in a manner that is more optimized and suitable for Node.js' use cases.
Instances of the Buffer
class are similar to arrays of integers but correspond to fixed-sized, raw memory allocations outside the V8 heap. The size of the Buffer
is established when it is created and cannot be resized.
The Buffer
class is a global within Node.js, making it unlikely that one would need to ever use require('buffer')
.
const buf1 = Buffer.alloc(10); // Creates a zero-filled Buffer of length 10. const buf2 = Buffer.alloc(10, 1); // Creates a Buffer of length 10, filled with 0x01. const buf3 = Buffer.allocUnsafe(10); // Creates an uninitialized buffer of length 10. // This is faster than calling Buffer.alloc() but the returned // Buffer instance might contain old data that needs to be // overwritten using either fill() or write(). const buf4 = Buffer.from([1,2,3]); // Creates a Buffer containing [01, 02, 03]. const buf5 = Buffer.from('test'); // Creates a Buffer containing ASCII bytes [74, 65, 73, 74]. const buf6 = Buffer.from('tést', 'utf8'); // Creates a Buffer containing UTF8 bytes [74, c3, a9, 73, 74].
Buffer.from()
, Buffer.alloc()
, and Buffer.allocUnsafe()
Historically, Buffer
instances have been created using the Buffer
constructor function, which allocates the returned Buffer
differently based on what arguments are provided:
- Passing a number as the first argument to
Buffer()
(e.g.new Buffer(10)
), allocates a newBuffer
object of the specified size. The memory allocated for suchBuffer
instances is not initialized and can contain sensitive data. SuchBuffer
objects must be initialized manually by using eitherbuf.fill(0)
or by writing to theBuffer
completely. While this behavior is intentional to improve performance, development experience has demonstrated that a more explicit distinction is required between creating a fast-but-uninitializedBuffer
versus creating a slower-but-saferBuffer
. - Passing a string, array, or
Buffer
as the first argument copies the passed object's data into theBuffer
. - Passing an
ArrayBuffer
returns aBuffer
that shares allocated memory with the givenArrayBuffer
.
Because the behavior of new Buffer()
changes significantly based on the type of value passed as the first argument, applications that do not properly validate the input arguments passed to new Buffer()
, or that fail to appropriately initialize newly allocated Buffer
content, can inadvertently introduce security and reliability issues into their code.
To make the creation of Buffer
objects more reliable and less error prone, new Buffer.from()
, Buffer.alloc()
, and Buffer.allocUnsafe()
methods have been introduced as an alternative means of creating Buffer
instances.
Developers should migrate all existing uses of the new Buffer()
constructors to one of these new APIs.
-
Buffer.from(array)
returns a newBuffer
containing a copy of the provided octets. -
Buffer.from(arrayBuffer[, byteOffset [, length]])
returns a newBuffer
that shares the same allocated memory as the givenArrayBuffer
. -
Buffer.from(buffer)
returns a newBuffer
containing a copy of the contents of the givenBuffer
. -
Buffer.from(str[, encoding])
returns a newBuffer
containing a copy of the provided string. -
Buffer.alloc(size[, fill[, encoding]])
returns a "filled"Buffer
instance of the specified size. This method can be significantly slower thanBuffer.allocUnsafe(size)
but ensures that newly createdBuffer
instances never contain old and potentially sensitive data. -
Buffer.allocUnsafe(size)
returns a newBuffer
of the specifiedsize
whose content must be initialized using eitherbuf.fill(0)
or written to completely.
Buffer
instances returned by Buffer.allocUnsafe(size)
may be allocated off a shared internal memory pool if the size
is less than or equal to half Buffer.poolSize
.
What makes Buffer.allocUnsafe(size)
"unsafe"?
When calling Buffer.allocUnsafe()
, the segment of allocated memory is uninitialized (it is not zeroed-out). While this design makes the allocation of memory quite fast, the allocated segment of memory might contain old data that is potentially sensitive. Using a Buffer
created by Buffer.allocUnsafe(size)
without completely overwriting the memory can allow this old data to be leaked when the Buffer
memory is read.
While there are clear performance advantages to using Buffer.allocUnsafe()
, extra care must be taken in order to avoid introducing security vulnerabilities into an application.
Buffers and Character Encodings
Buffers are commonly used to represent sequences of encoded characters such as UTF8, UCS2, Base64 or even Hex-encoded data. It is possible to convert back and forth between Buffers and ordinary JavaScript string objects by using an explicit encoding method.
const buf = Buffer.from('hello world', 'ascii'); console.log(buf.toString('hex')); // prints: 68656c6c6f20776f726c64 console.log(buf.toString('base64')); // prints: aGVsbG8gd29ybGQ=
The character encodings currently supported by Node.js include:
-
'ascii'
- for 7-bit ASCII data only. This encoding method is very fast and will strip the high bit if set. -
'utf8'
- Multibyte encoded Unicode characters. Many web pages and other document formats use UTF-8. -
'utf16le'
- 2 or 4 bytes, little-endian encoded Unicode characters. Surrogate pairs (U+10000 to U+10FFFF) are supported. -
'ucs2'
- Alias of'utf16le'
. -
'base64'
- Base64 string encoding. When creating a buffer from a string, this encoding will also correctly accept "URL and Filename Safe Alphabet" as specified in RFC 4648, Section 5. -
'binary'
- A way of encoding the buffer into a one-byte (latin-1
) encoded string. The string'latin-1'
is not supported. Instead, pass'binary'
to use'latin-1'
encoding. -
'hex'
- Encode each byte as two hexadecimal characters.
Buffers and TypedArray
Buffers are also Uint8Array
TypedArray instances. However, there are subtle incompatibilities with the TypedArray specification in ECMAScript 2015. For instance, while ArrayBuffer#slice()
creates a copy of the slice, the implementation of Buffer#slice()
creates a view over the existing Buffer without copying, making Buffer#slice()
far more efficient.
It is also possible to create new TypedArray instances from a Buffer
with the following caveats:
-
The
Buffer
object's memory is copied to the TypedArray, not shared. -
The
Buffer
object's memory is interpreted as an array of distinct elements, and not as a byte array of the target type. That is,new Uint32Array(Buffer.from([1,2,3,4]))
creates a 4-elementUint32Array
with elements[1,2,3,4]
, not aUint32Array
with a single element[0x1020304]
or[0x4030201]
.
It is possible to create a new Buffer
that shares the same allocated memory as a TypedArray instance by using the TypeArray object's .buffer
property:
const arr = new Uint16Array(2); arr[0] = 5000; arr[1] = 4000; const buf1 = Buffer.from(arr); // copies the buffer const buf2 = Buffer.from(arr.buffer); // shares the memory with arr; console.log(buf1); // Prints: <Buffer 88 a0>, copied buffer has only two elements console.log(buf2); // Prints: <Buffer 88 13 a0 0f> arr[1] = 6000; console.log(buf1); // Prints: <Buffer 88 a0> console.log(buf2); // Prints: <Buffer 88 13 70 17>
Note that when creating a Buffer
using the TypedArray's .buffer
, it is possible to use only a portion of the underlying ArrayBuffer
by passing in byteOffset
and length
parameters:
const arr = new Uint16Array(20); const buf = Buffer.from(arr.buffer, 0, 16); console.log(buf.length); // Prints: 16
The Buffer.from()
and TypedArray.from()
(e.g.Uint8Array.from()
) have different signatures and implementations. Specifically, the TypedArray variants accept a second argument that is a mapping function that is invoked on every element of the typed array:
TypedArray.from(source[, mapFn[, thisArg]])
The Buffer.from()
method, however, does not support the use of a mapping function:
Buffer.from(array)
Buffer.from(buffer)
Buffer.from(arrayBuffer[, byteOffset [, length]])
Buffer.from(str[, encoding])
Buffers and ES6 iteration
Buffers can be iterated over using the ECMAScript 2015 (ES6) for..of
syntax:
const buf = Buffer(.from[1, 2, 3]); for (var b of buf) console.log(b) // Prints: // 1 // 2 // 3
Additionally, the buf.values()
, buf.keys()
, and buf.entries()
methods can be used to create iterators.
The --zero-fill-buffers
command line option
Node.js can be started using the --zero-fill-buffers
command line option to force all newly allocated Buffer
and SlowBuffer
instances created using either new Buffer(size)
and new SlowBuffer(size)
to be automatically zero-filled upon creation. Use of this flag changes the default behavior of these methods and can have a significant impact on performance. Use of the --zero-fill-buffers
option is recommended only when absolutely necessary to enforce that newly allocated Buffer
instances cannot contain potentially sensitive data.
$ node --zero-fill-buffers > Buffer(5); <Buffer 00 00 00 00 00>
Class: Buffer
The Buffer class is a global type for dealing with binary data directly. It can be constructed in a variety of ways.
new Buffer(array)
-
array
<Array>
Allocates a new Buffer using an array
of octets.
const buf = new Buffer([0x62,0x75,0x66,0x66,0x65,0x72]); // creates a new Buffer containing ASCII bytes // ['b','u','f','f','e','r']
new Buffer(buffer)
-
buffer
<Buffer>
Copies the passed buffer
data onto a new Buffer
instance.
const buf1 = new Buffer('buffer'); const buf2 = new Buffer(buf1); buf1[0] = 0x61; console.log(buf1.toString()); // 'auffer' console.log(buf2.toString()); // 'buffer' (copy is not changed)
new Buffer(arrayBuffer[, byteOffset[, length]])
When passed a reference to the .buffer
property of a TypedArray
instance, the newly created Buffer will share the same allocated memory as the TypedArray.
The optional byteOffset
and length
arguments specify a memory range within the arrayBuffer
that will be shared by the Buffer
.
const arr = new Uint16Array(2); arr[0] = 5000; arr[1] = 4000; const buf = new Buffer(arr.buffer); // shares the memory with arr; console.log(buf); // Prints: <Buffer 88 13 a0 0f> // changing the TypdArray changes the Buffer also arr[1] = 6000; console.log(buf); // Prints: <Buffer 88 13 70 17>
new Buffer(size)
-
size
<Number>
Allocates a new Buffer
of size
bytes. The size
must be less than or equal to the value of require('buffer').kMaxLength
(on 64-bit architectures, kMaxLength
is (2^31)-1
). Otherwise, a RangeError
is thrown. If a size
less than 0 is specified, a zero-length Buffer will be created.
Unlike ArrayBuffers
, the underlying memory for Buffer
instances created in this way is not initialized. The contents of a newly created Buffer
are unknown and could contain sensitive data. Use buf.fill(0)
to initialize a Buffer to zeroes.
const buf = new Buffer(5); console.log(buf); // <Buffer 78 e0 82 02 01> // (octets will be different, every time) buf.fill(0); console.log(buf); // <Buffer 00 00 00 00 00>
new Buffer(str[, encoding])
Creates a new Buffer containing the given JavaScript string str
. If provided, the encoding
parameter identifies the strings character encoding.
const buf1 = new Buffer('this is a tést'); console.log(buf1.toString()); // prints: this is a tést console.log(buf1.toString('ascii')); // prints: this is a tC)st const buf2 = new Buffer('7468697320697320612074c3a97374', 'hex'); console.log(buf2.toString()); // prints: this is a tést
Class Method: Buffer.alloc(size[, fill[, encoding]])
Allocates a new Buffer
of size
bytes. If fill
is undefined
, the Buffer
will be zero-filled.
const buf = Buffer.alloc(5); console.log(buf); // <Buffer 00 00 00 00 00>
The size
must be less than or equal to the value of require('buffer').kMaxLength
(on 64-bit architectures, kMaxLength
is (2^31)-1
). Otherwise, a RangeError
is thrown. If a size
less than 0 is specified, a zero-length Buffer
will be created.
If fill
is specified, the allocated Buffer
will be initialized by calling buf.fill(fill)
. See [buf.fill()
][] for more information.
const buf = Buffer.alloc(5, 'a'); console.log(buf); // <Buffer 61 61 61 61 61>
If both fill
and encoding
are specified, the allocated Buffer
will be initialized by calling buf.fill(fill, encoding)
. For example:
const buf = Buffer.alloc(11, 'aGVsbG8gd29ybGQ=', 'base64'); console.log(buf); // <Buffer 68 65 6c 6c 6f 20 77 6f 72 6c 64>
Calling Buffer.alloc(size)
can be significantly slower than the alternative Buffer.allocUnsafe(size)
but ensures that the newly created Buffer
instance contents will never contain sensitive data.
A TypeError
will be thrown if size
is not a number.
Class Method: Buffer.allocUnsafe(size)
-
size
<Number>
Allocates a new non-zero-filled Buffer
of size
bytes. The size
must be less than or equal to the value of require('buffer').kMaxLength
(on 64-bit architectures, kMaxLength
is (2^31)-1
). Otherwise, a RangeError
is thrown. If a size
less than 0 is specified, a zero-length Buffer
will be created.
The underlying memory for Buffer
instances created in this way is not initialized. The contents of the newly created Buffer
are unknown and may contain sensitive data. Use buf.fill(0)
to initialize such Buffer
instances to zeroes.
const buf = Buffer.allocUnsafe(5); console.log(buf); // <Buffer 78 e0 82 02 01> // (octets will be different, every time) buf.fill(0); console.log(buf); // <Buffer 00 00 00 00 00>
A TypeError
will be thrown if size
is not a number.
Note that the Buffer
module pre-allocates an internal Buffer
instance of size Buffer.poolSize
that is used as a pool for the fast allocation of new Buffer
instances created using Buffer.allocUnsafe(size)
(and the new Buffer(size)
constructor) only when size
is less than or equal to Buffer.poolSize >> 1
(floor of Buffer.poolSize
divided by two). The default value of Buffer.poolSize
is 8192
but can be modified.
Use of this pre-allocated internal memory pool is a key difference between calling Buffer.alloc(size, fill)
vs. Buffer.allocUnsafe(size).fill(fill)
. Specifically, Buffer.alloc(size, fill)
will never use the internal Buffer pool, while Buffer.allocUnsafe(size).fill(fill)
will use the internal Buffer pool if size
is less than or equal to half Buffer.poolSize
. The difference is subtle but can be important when an application requires the additional performance that Buffer.allocUnsafe(size)
provides.
Class Method: Buffer.byteLength(string[, encoding])
-
string
<String> | <Buffer> | <TypedArray> | <DataView> | <ArrayBuffer> -
encoding
<String> Default:'utf8'
- Return: <Number>
Returns the actual byte length of a string. This is not the same as String.prototype.length
since that returns the number of characters in a string.
Example:
const str = '\u00bd + \u00bc = \u00be'; console.log(`${str}: ${str.length} characters, ` + `${Buffer.byteLength(str, 'utf8')} bytes`); // ½ + ¼ = ¾: 9 characters, 12 bytes
When string
is a Buffer
/DataView
/TypedArray
/ArrayBuffer
, returns the actual byte length.
Otherwise, converts to String
and returns the byte length of string.
Class Method: Buffer.compare(buf1, buf2)
Compares buf1
to buf2
typically for the purpose of sorting arrays of Buffers. This is equivalent is calling buf1.compare(buf2)
.
const arr = [Buffer.from('1234'), Buffer.from('0123')]; arr.sort(Buffer.compare);
Class Method: Buffer.concat(list[, totalLength])
Returns a new Buffer which is the result of concatenating all the Buffers in the list
together.
If the list has no items, or if the totalLength
is 0, then a new zero-length Buffer is returned.
If totalLength
is not provided, it is calculated from the Buffers in the list
. This, however, adds an additional loop to the function, so it is faster to provide the length explicitly.
Example: build a single Buffer from a list of three Buffers:
const buf1 = Buffer.alloc(10, 0); const buf2 = Buffer.alloc(14, 0); const buf3 = Buffer.alloc(18, 0); const totalLength = buf1.length + buf2.length + buf3.length; console.log(totalLength); const bufA = Buffer.concat([buf1, buf2, buf3], totalLength); console.log(bufA); console.log(bufA.length); // 42 // <Buffer 00 00 00 00 ...> // 42
Class Method: Buffer.from(array)
-
array
<Array>
Allocates a new Buffer
using an array
of octets.
const buf = Buffer.from([0x62,0x75,0x66,0x66,0x65,0x72]); // creates a new Buffer containing ASCII bytes // ['b','u','f','f','e','r']
A TypeError
will be thrown if array
is not an Array
.
Class Method: Buffer.from(arrayBuffer[, byteOffset[, length]])
-
arrayBuffer
<ArrayBuffer> The.buffer
property of aTypedArray
or anew ArrayBuffer()
-
byteOffset
<Number> Default:0
-
length
<Number> Default:arrayBuffer.length - byteOffset
When passed a reference to the .buffer
property of a TypedArray
instance, the newly created Buffer
will share the same allocated memory as the TypedArray.
const arr = new Uint16Array(2); arr[0] = 5000; arr[1] = 4000; const buf = Buffer.from(arr.buffer); // shares the memory with arr; console.log(buf); // Prints: <Buffer 88 13 a0 0f> // changing the TypedArray changes the Buffer also arr[1] = 6000; console.log(buf); // Prints: <Buffer 88 13 70 17>
The optional byteOffset
and length
arguments specify a memory range within the arrayBuffer
that will be shared by the Buffer
.
const ab = new ArrayBuffer(10); const buf = Buffer.from(ab, 0, 2); console.log(buf.length); // Prints: 2
A TypeError
will be thrown if arrayBuffer
is not an ArrayBuffer
.
Class Method: Buffer.from(buffer)
-
buffer
<Buffer>
Copies the passed buffer
data onto a new Buffer
instance.
const buf1 = Buffer.from('buffer'); const buf2 = Buffer.from(buf1); buf1[0] = 0x61; console.log(buf1.toString()); // 'auffer' console.log(buf2.toString()); // 'buffer' (copy is not changed)
A TypeError
will be thrown if buffer
is not a Buffer
.
Class Method: Buffer.from(str[, encoding])
Creates a new Buffer
containing the given JavaScript string str
. If provided, the encoding
parameter identifies the character encoding. If not provided, encoding
defaults to 'utf8'
.
const buf1 = Buffer.from('this is a tést'); console.log(buf1.toString()); // prints: this is a tést console.log(buf1.toString('ascii')); // prints: this is a tC)st const buf2 = Buffer.from('7468697320697320612074c3a97374', 'hex'); console.log(buf2.toString()); // prints: this is a tést
A TypeError
will be thrown if str
is not a string.
Class Method: Buffer.isBuffer(obj)
Returns 'true' if obj
is a Buffer.
Class Method: Buffer.isEncoding(encoding)
Returns true if the encoding
is a valid encoding argument, or false otherwise.
buf[index]
The index operator [index]
can be used to get and set the octet at position index
in the Buffer. The values refer to individual bytes, so the legal value range is between 0x00
and 0xFF
(hex) or 0
and 255
(decimal).
Example: copy an ASCII string into a Buffer, one byte at a time:
const str = "Node.js"; const buf = Buffer.allocUnsafe(str.length); for (var i = 0; i < str.length ; i++) { buf[i] = str.charCodeAt(i); } console.log(buf.toString('ascii')); // Prints: Node.js
buf.compare(otherBuffer)
Compares two Buffer instances and returns a number indicating whether buf
comes before, after, or is the same as the otherBuffer
in sort order. Comparison is based on the actual sequence of bytes in each Buffer.
-
0
is returned ifotherBuffer
is the same asbuf
-
1
is returned ifotherBuffer
should come beforebuf
when sorted. -
-1
is returned ifotherBuffer
should come afterbuf
when sorted.
const buf1 = Buffer.from('ABC'); const buf2 = Buffer.from('BCD'); const buf3 = Buffer.from('ABCD'); console.log(buf1.compare(buf1)); // Prints: 0 console.log(buf1.compare(buf2)); // Prints: -1 console.log(buf1.compare(buf3)); // Prints: 1 console.log(buf2.compare(buf1)); // Prints: 1 console.log(buf2.compare(buf3)); // Prints: 1 [buf1, buf2, buf3].sort(Buffer.compare); // produces sort order [buf1, buf3, buf2]
buf.copy(targetBuffer[, targetStart[, sourceStart[, sourceEnd]]])
Copies data from a region of this Buffer to a region in the target Buffer even if the target memory region overlaps with the source.
Example: build two Buffers, then copy buf1
from byte 16 through byte 19 into buf2
, starting at the 8th byte in buf2
.
const buf1 = Buffer.allocUnsafe(26); const buf2 = Buffer.allocUnsafe(26).fill('!'); for (var i = 0 ; i < 26 ; i++) { buf1[i] = i + 97; // 97 is ASCII a } buf1.copy(buf2, 8, 16, 20); console.log(buf2.toString('ascii', 0, 25)); // Prints: !!!!!!!!qrst!!!!!!!!!!!!!
Example: Build a single Buffer, then copy data from one region to an overlapping region in the same Buffer
const buf = Buffer.allocUnsafe(26); for (var i = 0 ; i < 26 ; i++) { buf[i] = i + 97; // 97 is ASCII a } buf.copy(buf, 0, 4, 10); console.log(buf.toString()); // efghijghijklmnopqrstuvwxyz
buf.entries()
- Return: <Iterator>
Creates and returns an iterator of [index, byte]
pairs from the Buffer contents.
const buf = Buffer.from('buffer'); for (var pair of buf.entries()) { console.log(pair); } // prints: // [0, 98] // [1, 117] // [2, 102] // [3, 102] // [4, 101] // [5, 114]
buf.equals(otherBuffer)
Returns a boolean indicating whether this
and otherBuffer
have exactly the same bytes.
const buf1 = Buffer.from('ABC'); const buf2 = Buffer.from('414243', 'hex'); const buf3 = Buffer.from('ABCD'); console.log(buf1.equals(buf2)); // Prints: true console.log(buf1.equals(buf3)); // Prints: false
buf.fill(value[, offset[, end]][, encoding])
Fills the Buffer with the specified value. If the offset
(defaults to 0
) and end
(defaults to buf.length
) are not given the entire buffer will be filled. The method returns a reference to the Buffer, so calls can be chained. This is meant as a small simplification to creating a Buffer. Allowing the creation and fill of the Buffer to be done on a single line:
const b = Buffer.alloc(50, 'h'); console.log(b.toString()); // Prints: hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
encoding
is only relevant if value
is a string. Otherwise it is ignored. value
is coerced to a uint32
value if it is not a String or Number.
The fill()
operation writes bytes into the Buffer dumbly. If the final write falls in between a multi-byte character then whatever bytes fit into the buffer are written.
Buffer.alloc(3, '\u0222'); // Prints: <Buffer c8 a2 c8>
buf.indexOf(value[, byteOffset][, encoding])
Operates similar to Array#indexOf()
in that it returns either the starting index position of value
in Buffer or -1
if the Buffer does not contain value
. The value
can be a String, Buffer or Number. Strings are by default interpreted as UTF8. Buffers will use the entire Buffer (to compare a partial Buffer use buf.slice()
). Numbers can range from 0 to 255.
const buf = Buffer.from('this is a buffer'); buf.indexOf('this'); // returns 0 buf.indexOf('is'); // returns 2 buf.indexOf(Buffer.from('a buffer')); // returns 8 buf.indexOf(97); // ascii for 'a' // returns 8 buf.indexOf(Buffer.from('a buffer example')); // returns -1 buf.indexOf(Buffer.from('a buffer example').slice(0,8)); // returns 8 const utf16Buffer = Buffer.from('\u039a\u0391\u03a3\u03a3\u0395', 'ucs2'); utf16Buffer.indexOf('\u03a3', 0, 'ucs2'); // returns 4 utf16Buffer.indexOf('\u03a3', -4, 'ucs2'); // returns 6
buf.includes(value[, byteOffset][, encoding])
Operates similar to Array#includes()
. The value
can be a String, Buffer or Number. Strings are interpreted as UTF8 unless overridden with the encoding
argument. Buffers will use the entire Buffer (to compare a partial Buffer use buf.slice()
). Numbers can range from 0 to 255.
The byteOffset
indicates the index in buf
where searching begins.
const buf = Buffer.from('this is a buffer'); buf.includes('this'); // returns true buf.includes('is'); // returns true buf.includes(Buffer.from('a buffer')); // returns true buf.includes(97); // ascii for 'a' // returns true buf.includes(Buffer.from('a buffer example')); // returns false buf.includes(Buffer.from('a buffer example').slice(0,8)); // returns true buf.includes('this', 4); // returns false
buf.keys()
- Return: <Iterator>
Creates and returns an iterator of Buffer keys (indices).
const buf = Buffer.from('buffer'); for (var key of buf.keys()) { console.log(key); } // prints: // 0 // 1 // 2 // 3 // 4 // 5
buf.length
Returns the amount of memory allocated for the Buffer in number of bytes. Note that this does not necessarily reflect the amount of usable data within the Buffer. For instance, in the example below, a Buffer with 1234 bytes is allocated, but only 11 ASCII bytes are written.
const buf = Buffer.allocUnsafe(1234); console.log(buf.length); // Prints: 1234 buf.write('some string', 0, 'ascii'); console.log(buf.length); // Prints: 1234
While the length
property is not immutable, changing the value of length
can result in undefined and inconsistent behavior. Applications that wish to modify the length of a Buffer should therefore treat length
as read-only and use buf.slice()
to create a new Buffer.
var buf = Buffer.allocUnsafe(10); buf.write('abcdefghj', 0, 'ascii'); console.log(buf.length); // Prints: 10 buf = buf.slice(0,5); console.log(buf.length); // Prints: 5
buf.readDoubleBE(offset[, noAssert])
buf.readDoubleLE(offset[, noAssert])
Reads a 64-bit double from the Buffer at the specified offset
with specified endian format (readDoubleBE()
returns big endian, readDoubleLE()
returns little endian).
Setting noAssert
to true
skips validation of the offset
. This allows the offset
to be beyond the end of the Buffer.
const buf = Buffer.from([1,2,3,4,5,6,7,8]); buf.readDoubleBE(); // Returns: 8.20788039913184e-304 buf.readDoubleLE(); // Returns: 5.447603722011605e-270 buf.readDoubleLE(1); // throws RangeError: Index out of range buf.readDoubleLE(1, true); // Warning: reads passed end of buffer! // Segmentation fault! don't do this!
buf.readFloatBE(offset[, noAssert])
buf.readFloatLE(offset[, noAssert])
Reads a 32-bit float from the Buffer at the specified offset
with specified endian format (readFloatBE()
returns big endian, readFloatLE()
returns little endian).
Setting noAssert
to true
skips validation of the offset
. This allows the offset
to be beyond the end of the Buffer.
const buf = Buffer.from([1,2,3,4]); buf.readFloatBE(); // Returns: 2.387939260590663e-38 buf.readFloatLE(); // Returns: 1.539989614439558e-36 buf.readFloatLE(1); // throws RangeError: Index out of range buf.readFloatLE(1, true); // Warning: reads passed end of buffer! // Segmentation fault! don't do this!
buf.readInt8(offset[, noAssert])
Reads a signed 8-bit integer from the Buffer at the specified offset
.
Setting noAssert
to true
skips validation of the offset
. This allows the offset
to be beyond the end of the Buffer.
Integers read from the Buffer are interpreted as two's complement signed values.
const buf = Buffer.from([1,-2,3,4]); buf.readInt8(0); // returns 1 buf.readInt8(1); // returns -2
buf.readInt16BE(offset[, noAssert])
buf.readInt16LE(offset[, noAssert])
Reads a signed 16-bit integer from the Buffer at the specified offset
with the specified endian format (readInt16BE()
returns big endian, readInt16LE()
returns little endian).
Setting noAssert
to true
skips validation of the offset
. This allows the offset
to be beyond the end of the Buffer.
Integers read from the Buffer are interpreted as two's complement signed values.
const buf = Buffer.from([1,-2,3,4]); buf.readInt16BE(); // returns 510 buf.readInt16LE(1); // returns 1022
buf.readInt32BE(offset[, noAssert])
buf.readInt32LE(offset[, noAssert])
Reads a signed 32-bit integer from the Buffer at the specified offset
with the specified endian format (readInt32BE()
returns big endian, readInt32LE()
returns little endian).
Setting noAssert
to true
skips validation of the offset
. This allows the offset
to be beyond the end of the Buffer.
Integers read from the Buffer are interpreted as two's complement signed values.
const buf = Buffer.from([1,-2,3,4]); buf.readInt32BE(); // returns 33424132 buf.readInt32LE(); // returns 67370497 buf.readInt32LE(1); // throws RangeError: Index out of range
buf.readIntBE(offset, byteLength[, noAssert])
buf.readIntLE(offset, byteLength[, noAssert])
Reads byteLength
number of bytes from the Buffer at the specified offset
and interprets the result as a two's complement signed value. Supports up to 48 bits of accuracy. For example:
const buf = Buffer.allocUnsafe(6); buf.writeUInt16LE(0x90ab, 0); buf.writeUInt32LE(0x12345678, 2); buf.readIntLE(0, 6).toString(16); // Specify 6 bytes (48 bits) // Returns: '1234567890ab' buf.readIntBE(0, 6).toString(16); // Returns: -546f87a9cbee
Setting noAssert
to true
skips validation of the offset
. This allows the offset
to be beyond the end of the Buffer.
buf.readUInt8(offset[, noAssert])
Reads an unsigned 8-bit integer from the Buffer at the specified offset
.
Setting noAssert
to true
skips validation of the offset
. This allows the offset
to be beyond the end of the Buffer.
const buf = Buffer.from([1,-2,3,4]); buf.readUInt8(0); // returns 1 buf.readUInt8(1); // returns 254
buf.readUInt16BE(offset[, noAssert])
buf.readUInt16LE(offset[, noAssert])
Reads an unsigned 16-bit integer from the Buffer at the specified offset
with specified endian format (readInt32BE()
returns big endian, readInt32LE()
returns little endian).
Setting noAssert
to true
skips validation of the offset
. This allows the offset
to be beyond the end of the Buffer.
Example:
const buf = Buffer.from([0x3, 0x4, 0x23, 0x42]); buf.readUInt16BE(0); // Returns: 0x0304 buf.readUInt16LE(0); // Returns: 0x0403 buf.readUInt16BE(1); // Returns: 0x0423 buf.readUInt16LE(1); // Returns: 0x2304 buf.readUInt16BE(2); // Returns: 0x2342 buf.readUInt16LE(2); // Returns: 0x4223
buf.readUInt32BE(offset[, noAssert])
buf.readUInt32LE(offset[, noAssert])
Reads an unsigned 32-bit integer from the Buffer at the specified offset
with specified endian format (readInt32BE()
returns big endian, readInt32LE()
returns little endian).
Setting noAssert
to true
skips validation of the offset
. This allows the offset
to be beyond the end of the Buffer.
Example:
const buf = Buffer.from([0x3, 0x4, 0x23, 0x42]); buf.readUInt32BE(0); // Returns: 0x03042342 console.log(buf.readUInt32LE(0)); // Returns: 0x42230403
buf.readUIntBE(offset, byteLength[, noAssert])
buf.readUIntLE(offset, byteLength[, noAssert])
Reads byteLength
number of bytes from the Buffer at the specified offset
and interprets the result as an unsigned integer. Supports up to 48 bits of accuracy. For example:
const buf = Buffer.allocUnsafe(6); buf.writeUInt16LE(0x90ab, 0); buf.writeUInt32LE(0x12345678, 2); buf.readUIntLE(0, 6).toString(16); // Specify 6 bytes (48 bits) // Returns: '1234567890ab' buf.readUIntBE(0, 6).toString(16); // Returns: ab9078563412
Setting noAssert
to true
skips validation of the offset
. This allows the offset
to be beyond the end of the Buffer.
buf.slice([start[, end]])
Returns a new Buffer that references the same memory as the original, but offset and cropped by the start
and end
indices.
Note that modifying the new Buffer slice will modify the memory in the original Buffer because the allocated memory of the two objects overlap.
Example: build a Buffer with the ASCII alphabet, take a slice, then modify one byte from the original Buffer.
const buf1 = Buffer.allocUnsafe(26); for (var i = 0 ; i < 26 ; i++) { buf1[i] = i + 97; // 97 is ASCII a } const buf2 = buf1.slice(0, 3); buf2.toString('ascii', 0, buf2.length); // Returns: 'abc' buf1[0] = 33; buf2.toString('ascii', 0, buf2.length); // Returns : '!bc'
Specifying negative indexes causes the slice to be generated relative to the end of the Buffer rather than the beginning.
const buf = Buffer.from('buffer'); buf.slice(-6, -1).toString(); // Returns 'buffe', equivalent to buf.slice(0, 5) buf.slice(-6, -2).toString(); // Returns 'buff', equivalent to buf.slice(0, 4) buf.slice(-5, -2).toString(); // Returns 'uff', equivalent to buf.slice(1, 4)
buf.swap16()
- Return: <Buffer>
Interprets the Buffer
as an array of unsigned 16-bit integers and swaps the byte-order in-place. Throws a RangeError
if the Buffer
length is not a multiple of 16 bits. The method returns a reference to the Buffer, so calls can be chained.
const buf = Buffer.from([0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8]); console.log(buf); // Prints Buffer(0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8) buf.swap16(); console.log(buf); // Prints Buffer(0x2, 0x1, 0x4, 0x3, 0x6, 0x5, 0x8, 0x7)
buf.swap32()
- Return: <Buffer>
Interprets the Buffer
as an array of unsigned 32-bit integers and swaps the byte-order in-place. Throws a RangeError
if the Buffer
length is not a multiple of 32 bits. The method returns a reference to the Buffer, so calls can be chained.
const buf = Buffer.from([0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8]); console.log(buf); // Prints Buffer(0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8) buf.swap32(); console.log(buf); // Prints Buffer(0x4, 0x3, 0x2, 0x1, 0x8, 0x7, 0x6, 0x5)
buf.toString([encoding[, start[, end]]])
Decodes and returns a string from the Buffer data using the specified character set encoding
.
const buf = Buffer.allocUnsafe(26); for (var i = 0 ; i < 26 ; i++) { buf[i] = i + 97; // 97 is ASCII a } buf.toString('ascii'); // Returns: 'abcdefghijklmnopqrstuvwxyz' buf.toString('ascii',0,5); // Returns: 'abcde' buf.toString('utf8',0,5); // Returns: 'abcde' buf.toString(undefined,0,5); // Returns: 'abcde', encoding defaults to 'utf8'
buf.toJSON()
- Return: <Object>
Returns a JSON representation of the Buffer instance. JSON.stringify()
implicitly calls this function when stringifying a Buffer instance.
Example:
const buf = Buffer.from('test'); const json = JSON.stringify(buf); console.log(json); // Prints: '{"type":"Buffer","data":[116,101,115,116]}' const copy = JSON.parse(json, (key, value) => { return value && value.type === 'Buffer' ? Buffer.from(value.data) : value; }); console.log(copy.toString()); // Prints: 'test'
buf.values()
- Return: <Iterator>
Creates and returns an iterator for Buffer values (bytes). This function is called automatically when the Buffer is used in a for..of
statement.
const buf = Buffer.from('buffer'); for (var value of buf.values()) { console.log(value); } // prints: // 98 // 117 // 102 // 102 // 101 // 114 for (var value of buf) { console.log(value); } // prints: // 98 // 117 // 102 // 102 // 101 // 114
buf.write(string[, offset[, length]][, encoding])
Writes string
to the Buffer at offset
using the given encoding
. The length
parameter is the number of bytes to write. If the Buffer did not contain enough space to fit the entire string, only a partial amount of the string will be written however, it will not write only partially encoded characters.
const buf = Buffer.allocUnsafe(256); const len = buf.write('\u00bd + \u00bc = \u00be', 0); console.log(`${len} bytes: ${buf.toString('utf8', 0, len)}`); // Prints: 12 bytes: ½ + ¼ = ¾
buf.writeDoubleBE(value, offset[, noAssert])
buf.writeDoubleLE(value, offset[, noAssert])
Writes value
to the Buffer at the specified offset
with specified endian format (writeDoubleBE()
writes big endian, writeDoubleLE()
writes little endian). The value
argument should be a valid 64-bit double. Behavior is not defined when value
is anything other than a 64-bit double.
Set noAssert
to true to skip validation of value
and offset
. This means that value
may be too large for the specific function and offset
may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness.
Example:
const buf = Buffer.allocUnsafe(8); buf.writeDoubleBE(0xdeadbeefcafebabe, 0); console.log(buf); // Prints: <Buffer 43 eb d5 b7 dd f9 5f d7> buf.writeDoubleLE(0xdeadbeefcafebabe, 0); console.log(buf); // Prints: <Buffer d7 5f f9 dd b7 d5 eb 43>
buf.writeFloatBE(value, offset[, noAssert])
buf.writeFloatLE(value, offset[, noAssert])
Writes value
to the Buffer at the specified offset
with specified endian format (writeFloatBE()
writes big endian, writeFloatLE()
writes little endian). Behavior is not defined when value
is anything other than a 32-bit float.
Set noAssert
to true to skip validation of value
and offset
. This means that value
may be too large for the specific function and offset
may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness.
Example:
const buf = Buffer.allocUnsafe(4); buf.writeFloatBE(0xcafebabe, 0); console.log(buf); // Prints: <Buffer 4f 4a fe bb> buf.writeFloatLE(0xcafebabe, 0); console.log(buf); // Prints: <Buffer bb fe 4a 4f>
buf.writeInt8(value, offset[, noAssert])
Writes value
to the Buffer at the specified offset
. The value
should be a valid signed 8-bit integer. Behavior is not defined when value
is anything other than a signed 8-bit integer.
Set noAssert
to true to skip validation of value
and offset
. This means that value
may be too large for the specific function and offset
may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness.
The value
is interpreted and written as a two's complement signed integer.
const buf = Buffer.allocUnsafe(2); buf.writeInt8(2, 0); buf.writeInt8(-2, 1); console.log(buf); // Prints: <Buffer 02 fe>
buf.writeInt16BE(value, offset[, noAssert])
buf.writeInt16LE(value, offset[, noAssert])
Writes value
to the Buffer at the specified offset
with specified endian format (writeInt16BE()
writes big endian, writeInt16LE()
writes little endian). The value
should be a valid signed 16-bit integer. Behavior is not defined when value
is anything other than a signed 16-bit integer.
Set noAssert
to true to skip validation of value
and offset
. This means that value
may be too large for the specific function and offset
may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness.
The value
is interpreted and written as a two's complement signed integer.
const buf = Buffer.allocUnsafe(4); buf.writeInt16BE(0x0102,0); buf.writeInt16LE(0x0304,2); console.log(buf); // Prints: <Buffer 01 02 04 03>
buf.writeInt32BE(value, offset[, noAssert])
buf.writeInt32LE(value, offset[, noAssert])
Writes value
to the Buffer at the specified offset
with specified endian format (writeInt32BE()
writes big endian, writeInt32LE()
writes little endian). The value
should be a valid signed 32-bit integer. Behavior is not defined when value
is anything other than a signed 32-bit integer.
Set noAssert
to true to skip validation of value
and offset
. This means that value
may be too large for the specific function and offset
may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness.
The value
is interpreted and written as a two's complement signed integer.
const buf = Buffer.allocUnsafe(8); buf.writeInt32BE(0x01020304,0); buf.writeInt32LE(0x05060708,4); console.log(buf); // Prints: <Buffer 01 02 03 04 08 07 06 05>
buf.writeIntBE(value, offset, byteLength[, noAssert])
buf.writeIntLE(value, offset, byteLength[, noAssert])
Writes value
to the Buffer at the specified offset
and byteLength
. Supports up to 48 bits of accuracy. For example:
const buf1 = Buffer.allocUnsafe(6); buf1.writeUIntBE(0x1234567890ab, 0, 6); console.log(buf1); // Prints: <Buffer 12 34 56 78 90 ab> const buf2 = Buffer.allocUnsafe(6); buf2.writeUIntLE(0x1234567890ab, 0, 6); console.log(buf2); // Prints: <Buffer ab 90 78 56 34 12>
Set noAssert
to true to skip validation of value
and offset
. This means that value
may be too large for the specific function and offset
may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness.
Behavior is not defined when value
is anything other than an integer.
buf.writeUInt8(value, offset[, noAssert])
Writes value
to the Buffer at the specified offset
. The value
should be a valid unsigned 8-bit integer. Behavior is not defined when value
is anything other than an unsigned 8-bit integer.
Set noAssert
to true to skip validation of value
and offset
. This means that value
may be too large for the specific function and offset
may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness.
Example:
const buf = Buffer.allocUnsafe(4); buf.writeUInt8(0x3, 0); buf.writeUInt8(0x4, 1); buf.writeUInt8(0x23, 2); buf.writeUInt8(0x42, 3); console.log(buf); // Prints: <Buffer 03 04 23 42>
buf.writeUInt16BE(value, offset[, noAssert])
buf.writeUInt16LE(value, offset[, noAssert])
Writes value
to the Buffer at the specified offset
with specified endian format (writeUInt16BE()
writes big endian, writeUInt16LE()
writes little endian). The value
should be a valid unsigned 16-bit integer. Behavior is not defined when value
is anything other than an unsigned 16-bit integer.
Set noAssert
to true to skip validation of value
and offset
. This means that value
may be too large for the specific function and offset
may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness.
Example:
const buf = Buffer.allocUnsafe(4); buf.writeUInt16BE(0xdead, 0); buf.writeUInt16BE(0xbeef, 2); console.log(buf); // Prints: <Buffer de ad be ef> buf.writeUInt16LE(0xdead, 0); buf.writeUInt16LE(0xbeef, 2); console.log(buf); // Prints: <Buffer ad de ef be>
buf.writeUInt32BE(value, offset[, noAssert])
buf.writeUInt32LE(value, offset[, noAssert])
Writes value
to the Buffer at the specified offset
with specified endian format (writeUInt32BE()
writes big endian, writeUInt32LE()
writes little endian). The value
should be a valid unsigned 32-bit integer. Behavior is not defined when value
is anything other than an unsigned 32-bit integer.
Set noAssert
to true to skip validation of value
and offset
. This means that value
may be too large for the specific function and offset
may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness.
Example:
const buf = Buffer.allocUnsafe(4); buf.writeUInt32BE(0xfeedface, 0); console.log(buf); // Prints: <Buffer fe ed fa ce> buf.writeUInt32LE(0xfeedface, 0); console.log(buf); // Prints: <Buffer ce fa ed fe>
buf.writeUIntBE(value, offset, byteLength[, noAssert])
buf.writeUIntLE(value, offset, byteLength[, noAssert])
Writes value
to the Buffer at the specified offset
and byteLength
. Supports up to 48 bits of accuracy. For example:
const buf = Buffer.allocUnsafe(6); buf.writeUIntBE(0x1234567890ab, 0, 6); console.log(buf); // Prints: <Buffer 12 34 56 78 90 ab>
Set noAssert
to true to skip validation of value
and offset
. This means that value
may be too large for the specific function and offset
may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness.
Behavior is not defined when value
is anything other than an unsigned integer.
buffer.INSPECT_MAX_BYTES
- <Number> Default: 50
Returns the maximum number of bytes that will be returned when buffer.inspect()
is called. This can be overridden by user modules. See util.inspect()
for more details on buffer.inspect()
behavior.
Note that this is a property on the buffer
module as returned by require('buffer')
, not on the Buffer global or a Buffer instance.
Class: SlowBuffer
Returns an un-pooled Buffer
.
In order to avoid the garbage collection overhead of creating many individually allocated Buffers, by default allocations under 4KB are sliced from a single larger allocated object. This approach improves both performance and memory usage since v8 does not need to track and cleanup as many Persistent
objects.
In the case where a developer may need to retain a small chunk of memory from a pool for an indeterminate amount of time, it may be appropriate to create an un-pooled Buffer instance using SlowBuffer
then copy out the relevant bits.
// need to keep around a few small chunks of memory const store = []; socket.on('readable', () => { var data = socket.read(); // allocate for retained data var sb = SlowBuffer(10); // copy the data into the new allocation data.copy(sb, 0, 0, 10); store.push(sb); });
Use of SlowBuffer
should be used only as a last resort after a developer has observed undue memory retention in their applications.
new SlowBuffer(size)
-
size
Number
Allocates a new SlowBuffer
of size
bytes. The size
must be less than or equal to the value of require('buffer').kMaxLength
(on 64-bit architectures, kMaxLength
is (2^31)-1
). Otherwise, a RangeError
is thrown. If a size
less than 0 is specified, a zero-length SlowBuffer
will be created.
The underlying memory for SlowBuffer
instances is not initialized. The contents of a newly created SlowBuffer
are unknown and could contain sensitive data. Use buf.fill(0)
to initialize a SlowBuffer
to zeroes.
const SlowBuffer = require('buffer').SlowBuffer; const buf = new SlowBuffer(5); console.log(buf); // <Buffer 78 e0 82 02 01> // (octets will be different, every time) buf.fill(0); console.log(buf); // <Buffer 00 00 00 00 00>