-
numpy.apply_along_axis(func1d, axis, arr, *args, **kwargs)
[source] -
Apply a function to 1-D slices along the given axis.
Execute
func1d(a, *args)
wherefunc1d
operates on 1-D arrays anda
is a 1-D slice ofarr
alongaxis
.Parameters: func1d : function
This function should accept 1-D arrays. It is applied to 1-D slices of
arr
along the specified axis.axis : integer
Axis along which
arr
is sliced.arr : ndarray
Input array.
args : any
Additional arguments to
func1d
.kwargs: any
Additional named arguments to
func1d
.New in version 1.9.0.
Returns: apply_along_axis : ndarray
The output array. The shape of
outarr
is identical to the shape ofarr
, except along theaxis
dimension, where the length ofoutarr
is equal to the size of the return value offunc1d
. Iffunc1d
returns a scalaroutarr
will have one fewer dimensions thanarr
.See also
-
apply_over_axes
- Apply a function repeatedly over multiple axes.
Examples
12345678>>>
def
my_func(a):
...
"""Average first and last element of a 1-D array"""
...
return
(a[
0
]
+
a[
-
1
])
*
0.5
>>> b
=
np.array([[
1
,
2
,
3
], [
4
,
5
,
6
], [
7
,
8
,
9
]])
>>> np.apply_along_axis(my_func,
0
, b)
array([
4.
,
5.
,
6.
])
>>> np.apply_along_axis(my_func,
1
, b)
array([
2.
,
5.
,
8.
])
For a function that doesn?t return a scalar, the number of dimensions in
outarr
is the same asarr
.12345>>> b
=
np.array([[
8
,
1
,
7
], [
4
,
3
,
9
], [
5
,
2
,
6
]])
>>> np.apply_along_axis(
sorted
,
1
, b)
array([[
1
,
7
,
8
],
[
3
,
4
,
9
],
[
2
,
5
,
6
]])
-
numpy.apply_along_axis()

2025-01-10 15:47:30
Please login to continue.