-
numpy.set_printoptions(precision=None, threshold=None, edgeitems=None, linewidth=None, suppress=None, nanstr=None, infstr=None, formatter=None)
[source] -
Set printing options.
These options determine the way floating point numbers, arrays and other NumPy objects are displayed.
Parameters: precision : int, optional
Number of digits of precision for floating point output (default 8).
threshold : int, optional
Total number of array elements which trigger summarization rather than full repr (default 1000).
edgeitems : int, optional
Number of array items in summary at beginning and end of each dimension (default 3).
linewidth : int, optional
The number of characters per line for the purpose of inserting line breaks (default 75).
suppress : bool, optional
Whether or not suppress printing of small floating point values using scientific notation (default False).
nanstr : str, optional
String representation of floating point not-a-number (default nan).
infstr : str, optional
String representation of floating point infinity (default inf).
formatter : dict of callables, optional
If not None, the keys should indicate the type(s) that the respective formatting function applies to. Callables should return a string. Types that are not specified (by their corresponding keys) are handled by the default formatters. Individual types for which a formatter can be set are:
12345678910-
'bool'
-
'int'
-
'timedelta'
: a `numpy.timedelta64`
-
'datetime'
: a `numpy.datetime64`
-
'float'
-
'longfloat'
:
128
-
bit floats
-
'complexfloat'
-
'longcomplexfloat'
: composed of two
128
-
bit floats
-
'numpy_str'
: types `numpy.string_`
and
`numpy.unicode_`
-
'str'
:
all
other strings
Other keys that can be used to set a group of types at once are:
12345-
'all'
: sets
all
types
-
'int_kind'
: sets
'int'
-
'float_kind'
: sets
'float'
and
'longfloat'
-
'complex_kind'
: sets
'complexfloat'
and
'longcomplexfloat'
-
'str_kind'
: sets
'str'
and
'numpystr'
See also
Notes
formatter
is always reset with a call toset_printoptions
.Examples
Floating point precision can be set:
123>>> np.set_printoptions(precision
=
4
)
>>>
print
(np.array([
1.123456789
]))
[
1.1235
]
Long arrays can be summarised:
123>>> np.set_printoptions(threshold
=
5
)
>>>
print
(np.arange(
10
))
[
0
1
2
...,
7
8
9
]
Small results can be suppressed:
1234567>>> eps
=
np.finfo(
float
).eps
>>> x
=
np.arange(
4.
)
>>> x
*
*
2
-
(x
+
eps)
*
*
2
array([
-
4.9304e
-
32
,
-
4.4409e
-
16
,
0.0000e
+
00
,
0.0000e
+
00
])
>>> np.set_printoptions(suppress
=
True
)
>>> x
*
*
2
-
(x
+
eps)
*
*
2
array([
-
0.
,
-
0.
,
0.
,
0.
])
A custom formatter can be used to display array elements as desired:
1234567>>> np.set_printoptions(formatter
=
{
'all'
:
lambda
x:
'int: '
+
str
(
-
x)})
>>> x
=
np.arange(
3
)
>>> x
array([
int
:
0
,
int
:
-
1
,
int
:
-
2
])
>>> np.set_printoptions()
# formatter gets reset
>>> x
array([
0
,
1
,
2
])
To put back the default options, you can use:
123>>> np.set_printoptions(edgeitems
=
3
,infstr
=
'inf'
,
... linewidth
=
75
, nanstr
=
'nan'
, precision
=
8
,
... suppress
=
False
, threshold
=
1000
, formatter
=
None
)
numpy.set_printoptions()

2025-01-10 15:47:30
Please login to continue.