-
numpy.linalg.tensorinv(a, ind=2)
[source] -
Compute the ?inverse? of an N-dimensional array.
The result is an inverse for
a
relative to the tensordot operationtensordot(a, b, ind)
, i. e., up to floating-point accuracy,tensordot(tensorinv(a), a, ind)
is the ?identity? tensor for the tensordot operation.Parameters: a : array_like
Tensor to ?invert?. Its shape must be ?square?, i. e.,
prod(a.shape[:ind]) == prod(a.shape[ind:])
.ind : int, optional
Number of first indices that are involved in the inverse sum. Must be a positive integer, default is 2.
Returns: b : ndarray
a
?s tensordot inverse, shapea.shape[ind:] + a.shape[:ind]
.Raises: LinAlgError
If
a
is singular or not ?square? (in the above sense).See also
tensordot
,tensorsolve
Examples
12345678>>> a
=
np.eye(
4
*
6
)
>>> a.shape
=
(
4
,
6
,
8
,
3
)
>>> ainv
=
np.linalg.tensorinv(a, ind
=
2
)
>>> ainv.shape
(
8
,
3
,
4
,
6
)
>>> b
=
np.random.randn(
4
,
6
)
>>> np.allclose(np.tensordot(ainv, b), np.linalg.tensorsolve(a, b))
True
12345678>>> a
=
np.eye(
4
*
6
)
>>> a.shape
=
(
24
,
8
,
3
)
>>> ainv
=
np.linalg.tensorinv(a, ind
=
1
)
>>> ainv.shape
(
8
,
3
,
24
)
>>> b
=
np.random.randn(
24
)
>>> np.allclose(np.tensordot(ainv, b,
1
), np.linalg.tensorsolve(a, b))
True
numpy.linalg.tensorinv()

2025-01-10 15:47:30
Please login to continue.