-
numpy.ma.indices(dimensions, dtype=)
[source] -
Return an array representing the indices of a grid.
Compute an array where the subarrays contain index values 0,1,... varying only along the corresponding axis.
Parameters: dimensions : sequence of ints
The shape of the grid.
dtype : dtype, optional
Data type of the result.
Returns: grid : ndarray
The array of grid indices,
grid.shape = (len(dimensions),) + tuple(dimensions)
.See also
mgrid
,meshgrid
Notes
The output shape is obtained by prepending the number of dimensions in front of the tuple of dimensions, i.e. if
dimensions
is a tuple(r0, ..., rN-1)
of lengthN
, the output shape is(N,r0,...,rN-1)
.The subarrays
grid[k]
contains the N-D array of indices along thek-th
axis. Explicitly:1grid[k,i0,i1,...,iN
-
1
]
=
ik
Examples
123456789>>> grid
=
np.indices((
2
,
3
))
>>> grid.shape
(
2
,
2
,
3
)
>>> grid[
0
]
# row indices
array([[
0
,
0
,
0
],
[
1
,
1
,
1
]])
>>> grid[
1
]
# column indices
array([[
0
,
1
,
2
],
[
0
,
1
,
2
]])
The indices can be used as an index into an array.
12345>>> x
=
np.arange(
20
).reshape(
5
,
4
)
>>> row, col
=
np.indices((
2
,
3
))
>>> x[row, col]
array([[
0
,
1
,
2
],
[
4
,
5
,
6
]])
Note that it would be more straightforward in the above example to extract the required elements directly with
x[:2, :3]
.
numpy.ma.indices()

2025-01-10 15:47:30
Please login to continue.