-
numpy.ma.mask_rowcols(a, axis=None)
[source] -
Mask rows and/or columns of a 2D array that contain masked values.
Mask whole rows and/or columns of a 2D array that contain masked values. The masking behavior is selected using the
axis
parameter.- If
axis
is None, rows and columns are masked. - If
axis
is 0, only rows are masked. - If
axis
is 1 or -1, only columns are masked.
Parameters: a : array_like, MaskedArray
The array to mask. If not a MaskedArray instance (or if no array elements are masked). The result is a MaskedArray with
mask
set tonomask
(False). Must be a 2D array.axis : int, optional
Axis along which to perform the operation. If None, applies to a flattened version of the array.
Returns: a : MaskedArray
A modified version of the input array, masked depending on the value of the
axis
parameter.Raises: NotImplementedError
If input array
a
is not 2D.See also
-
mask_rows
- Mask rows of a 2D array that contain masked values.
-
mask_cols
- Mask cols of a 2D array that contain masked values.
-
masked_where
- Mask where a condition is met.
Notes
The input array?s mask is modified by this function.
Examples
12345678910111213141516171819202122232425262728>>>
import
numpy.ma as ma
>>> a
=
np.zeros((
3
,
3
), dtype
=
np.
int
)
>>> a[
1
,
1
]
=
1
>>> a
array([[
0
,
0
,
0
],
[
0
,
1
,
0
],
[
0
,
0
,
0
]])
>>> a
=
ma.masked_equal(a,
1
)
>>> a
masked_array(data
=
[[
0
0
0
]
[
0
-
-
0
]
[
0
0
0
]],
mask
=
[[
False
False
False
]
[
False
True
False
]
[
False
False
False
]],
fill_value
=
999999
)
>>> ma.mask_rowcols(a)
masked_array(data
=
[[
0
-
-
0
]
[
-
-
-
-
-
-
]
[
0
-
-
0
]],
mask
=
[[
False
True
False
]
[
True
True
True
]
[
False
True
False
]],
fill_value
=
999999
)
- If
numpy.ma.mask_rowcols()

2025-01-10 15:47:30
Please login to continue.