-
numpy.ma.masked_object(x, value, copy=True, shrink=True)
[source] -
Mask the array
x
where the data are exactly equal to value.This function is similar to
masked_values
, but only suitable for object arrays: for floating point, usemasked_values
instead.Parameters: x : array_like
Array to mask
value : object
Comparison value
copy : {True, False}, optional
Whether to return a copy of
x
.shrink : {True, False}, optional
Whether to collapse a mask full of False to nomask
Returns: result : MaskedArray
The result of masking
x
where equal tovalue
.See also
-
masked_where
- Mask where a condition is met.
-
masked_equal
- Mask where equal to a given value (integers).
-
masked_values
- Mask using floating point equality.
Examples
1234567891011>>>
import
numpy.ma as ma
>>> food
=
np.array([
'green_eggs'
,
'ham'
], dtype
=
object
)
>>>
# don't eat spoiled food
>>> eat
=
ma.masked_object(food,
'green_eggs'
)
>>>
print
(eat)
[
-
-
ham]
>>>
# plain ol` ham is boring
>>> fresh_food
=
np.array([
'cheese'
,
'ham'
,
'pineapple'
], dtype
=
object
)
>>> eat
=
ma.masked_object(fresh_food,
'green_eggs'
)
>>>
print
(eat)
[cheese ham pineapple]
Note that
mask
is set tonomask
if possible.1234>>> eat
masked_array(data
=
[cheese ham pineapple],
mask
=
False
,
fill_value
=
?)
-
numpy.ma.masked_object()

2025-01-10 15:47:30
Please login to continue.