-
numpy.ma.masked_values(x, value, rtol=1e-05, atol=1e-08, copy=True, shrink=True)
[source] -
Mask using floating point equality.
Return a MaskedArray, masked where the data in array
x
are approximately equal tovalue
, i.e. where the following condition is True(abs(x - value) <= atol+rtol*abs(value))
The fill_value is set to
value
and the mask is set tonomask
if possible. For integers, consider usingmasked_equal
.Parameters: x : array_like
Array to mask.
value : float
Masking value.
rtol : float, optional
Tolerance parameter.
atol : float, optional
Tolerance parameter (1e-8).
copy : bool, optional
Whether to return a copy of
x
.shrink : bool, optional
Whether to collapse a mask full of False to
nomask
.Returns: result : MaskedArray
The result of masking
x
where approximately equal tovalue
.See also
-
masked_where
- Mask where a condition is met.
-
masked_equal
- Mask where equal to a given value (integers).
Examples
123456>>>
import
numpy.ma as ma
>>> x
=
np.array([
1
,
1.1
,
2
,
1.1
,
3
])
>>> ma.masked_values(x,
1.1
)
masked_array(data
=
[
1.0
-
-
2.0
-
-
3.0
],
mask
=
[
False
True
False
True
False
],
fill_value
=
1.1
)
Note that
mask
is set tonomask
if possible.1234>>> ma.masked_values(x,
1.5
)
masked_array(data
=
[
1.
1.1
2.
1.1
3.
],
mask
=
False
,
fill_value
=
1.5
)
For integers, the fill value will be different in general to the result of
masked_equal
.1234567891011>>> x
=
np.arange(
5
)
>>> x
array([
0
,
1
,
2
,
3
,
4
])
>>> ma.masked_values(x,
2
)
masked_array(data
=
[
0
1
-
-
3
4
],
mask
=
[
False
False
True
False
False
],
fill_value
=
2
)
>>> ma.masked_equal(x,
2
)
masked_array(data
=
[
0
1
-
-
3
4
],
mask
=
[
False
False
True
False
False
],
fill_value
=
999999
)
-
numpy.ma.masked_values()

2025-01-10 15:47:30
Please login to continue.