-
numpy.ma.masked_invalid(a, copy=True)
[source] -
Mask an array where invalid values occur (NaNs or infs).
This function is a shortcut to
masked_where
, withcondition
= ~(np.isfinite(a)). Any pre-existing mask is conserved. Only applies to arrays with a dtype where NaNs or infs make sense (i.e. floating point types), but accepts any array_like object.See also
-
masked_where
- Mask where a condition is met.
Examples
12345678910>>>
import
numpy.ma as ma
>>> a
=
np.arange(
5
, dtype
=
np.
float
)
>>> a[
2
]
=
np.NaN
>>> a[
3
]
=
np.PINF
>>> a
array([
0.
,
1.
, NaN, Inf,
4.
])
>>> ma.masked_invalid(a)
masked_array(data
=
[
0.0
1.0
-
-
-
-
4.0
],
mask
=
[
False
False
True
True
False
],
fill_value
=
1e
+
20
)
-
numpy.ma.masked_invalid()

2025-01-10 15:47:30
Please login to continue.