-
numpy.ma.resize(x, new_shape)
[source] -
Return a new masked array with the specified size and shape.
This is the masked equivalent of the
numpy.resize
function. The new array is filled with repeated copies ofx
(in the order that the data are stored in memory). Ifx
is masked, the new array will be masked, and the new mask will be a repetition of the old one.See also
-
numpy.resize
- Equivalent function in the top level NumPy module.
Examples
12345678910111213141516171819202122232425>>>
import
numpy.ma as ma
>>> a
=
ma.array([[
1
,
2
] ,[
3
,
4
]])
>>> a[
0
,
1
]
=
ma.masked
>>> a
masked_array(data
=
[[
1
-
-
]
[
3
4
]],
mask
=
[[
False
True
]
[
False
False
]],
fill_value
=
999999
)
>>> np.resize(a, (
3
,
3
))
array([[
1
,
2
,
3
],
[
4
,
1
,
2
],
[
3
,
4
,
1
]])
>>> ma.resize(a, (
3
,
3
))
masked_array(data
=
[[
1
-
-
3
]
[
4
1
-
-
]
[
3
4
1
]],
mask
=
[[
False
True
False
]
[
False
False
True
]
[
False
False
False
]],
fill_value
=
999999
)
A MaskedArray is always returned, regardless of the input type.
123456789>>> a
=
np.array([[
1
,
2
] ,[
3
,
4
]])
>>> ma.resize(a, (
3
,
3
))
masked_array(data
=
[[
1
2
3
]
[
4
1
2
]
[
3
4
1
]],
mask
=
False
,
fill_value
=
999999
)
-
numpy.ma.resize()

2025-01-10 15:47:30
Please login to continue.