-
numpy.random.noncentral_f(dfnum, dfden, nonc, size=None)
-
Draw samples from the noncentral F distribution.
Samples are drawn from an F distribution with specified parameters,
dfnum
(degrees of freedom in numerator) anddfden
(degrees of freedom in denominator), where both parameters > 1.nonc
is the non-centrality parameter.Parameters: dfnum : int
Parameter, should be > 1.
dfden : int
Parameter, should be > 1.
nonc : float
Parameter, should be >= 0.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g.,
(m, n, k)
, thenm * n * k
samples are drawn. Default is None, in which case a single value is returned.Returns: samples : scalar or ndarray
Drawn samples.
Notes
When calculating the power of an experiment (power = probability of rejecting the null hypothesis when a specific alternative is true) the non-central F statistic becomes important. When the null hypothesis is true, the F statistic follows a central F distribution. When the null hypothesis is not true, then it follows a non-central F statistic.
References
[R247] Weisstein, Eric W. ?Noncentral F-Distribution.? From MathWorld?A Wolfram Web Resource. http://mathworld.wolfram.com/NoncentralF-Distribution.html [R248] Wikipedia, ?Noncentral F distribution?, http://en.wikipedia.org/wiki/Noncentral_F-distribution Examples
In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral F distribution. We need to calculate the area in the tail of the distribution that exceeds the value of the F distribution for the null hypothesis. We?ll plot the two probability distributions for comparison.
12345678910>>> dfnum
=
3
# between group deg of freedom
>>> dfden
=
20
# within groups degrees of freedom
>>> nonc
=
3.0
>>> nc_vals
=
np.random.noncentral_f(dfnum, dfden, nonc,
1000000
)
>>> NF
=
np.histogram(nc_vals, bins
=
50
, normed
=
True
)
>>> c_vals
=
np.random.f(dfnum, dfden,
1000000
)
>>> F
=
np.histogram(c_vals, bins
=
50
, normed
=
True
)
>>> plt.plot(F[
1
][
1
:], F[
0
])
>>> plt.plot(NF[
1
][
1
:], NF[
0
])
>>> plt.show()
numpy.random.noncentral_f()

2025-01-10 15:47:30
Please login to continue.