-
numpy.random.power(a, size=None)
-
Draws samples in [0, 1] from a power distribution with positive exponent a - 1.
Also known as the power function distribution.
Parameters: a : float
parameter, > 0
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g.,
(m, n, k)
, thenm * n * k
samples are drawn. Default is None, in which case a single value is returned.Returns: samples : ndarray or scalar
The returned samples lie in [0, 1].
Raises: ValueError
If a < 1.
Notes
The probability density function is
The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special case of the Beta distribution.
It is used, for example, in modeling the over-reporting of insurance claims.
References
[R257] Christian Kleiber, Samuel Kotz, ?Statistical size distributions in economics and actuarial sciences?, Wiley, 2003. [R258] Heckert, N. A. and Filliben, James J. ?NIST Handbook 148: Dataplot Reference Manual, Volume 2: Let Subcommands and Library Functions?, National Institute of Standards and Technology Handbook Series, June 2003. http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf Examples
Draw samples from the distribution:
123>>> a
=
5.
# shape
>>> samples
=
1000
>>> s
=
np.random.power(a, samples)
Display the histogram of the samples, along with the probability density function:
1234567>>>
import
matplotlib.pyplot as plt
>>> count, bins, ignored
=
plt.hist(s, bins
=
30
)
>>> x
=
np.linspace(
0
,
1
,
100
)
>>> y
=
a
*
x
*
*
(a
-
1.
)
>>> normed_y
=
samples
*
np.diff(bins)[
0
]
*
y
>>> plt.plot(x, normed_y)
>>> plt.show()
Compare the power function distribution to the inverse of the Pareto.
12345>>>
from
scipy
import
stats
>>> rvs
=
np.random.power(
5
,
1000000
)
>>> rvsp
=
np.random.pareto(
5
,
1000000
)
>>> xx
=
np.linspace(
0
,
1
,
100
)
>>> powpdf
=
stats.powerlaw.pdf(xx,
5
)
1234>>> plt.figure()
>>> plt.hist(rvs, bins
=
50
, normed
=
True
)
>>> plt.plot(xx,powpdf,
'r-'
)
>>> plt.title(
'np.random.power(5)'
)
1234>>> plt.figure()
>>> plt.hist(
1.
/
(
1.
+
rvsp), bins
=
50
, normed
=
True
)
>>> plt.plot(xx,powpdf,
'r-'
)
>>> plt.title(
'inverse of 1 + np.random.pareto(5)'
)
1234>>> plt.figure()
>>> plt.hist(
1.
/
(
1.
+
rvsp), bins
=
50
, normed
=
True
)
>>> plt.plot(xx,powpdf,
'r-'
)
>>> plt.title(
'inverse of stats.pareto(5)'
)
(Source code)
numpy.random.power()

2025-01-10 15:47:30
Please login to continue.