-
numpy.in1d(ar1, ar2, assume_unique=False, invert=False)
[source] -
Test whether each element of a 1-D array is also present in a second array.
Returns a boolean array the same length as
ar1
that is True where an element ofar1
is inar2
and False otherwise.Parameters: ar1 : (M,) array_like
Input array.
ar2 : array_like
The values against which to test each value of
ar1
.assume_unique : bool, optional
If True, the input arrays are both assumed to be unique, which can speed up the calculation. Default is False.
invert : bool, optional
If True, the values in the returned array are inverted (that is, False where an element of
ar1
is inar2
and True otherwise). Default is False.np.in1d(a, b, invert=True)
is equivalent to (but is faster than)np.invert(in1d(a, b))
.New in version 1.8.0.
Returns: in1d : (M,) ndarray, bool
The values
ar1[in1d]
are inar2
.See also
-
numpy.lib.arraysetops
- Module with a number of other functions for performing set operations on arrays.
Notes
in1d
can be considered as an element-wise function version of the python keywordin
, for 1-D sequences.in1d(a, b)
is roughly equivalent tonp.array([item in b for item in a])
. However, this idea fails ifar2
is a set, or similar (non-sequence) container: Asar2
is converted to an array, in those casesasarray(ar2)
is an object array rather than the expected array of contained values.New in version 1.4.0.
Examples
123456789101112>>> test
=
np.array([
0
,
1
,
2
,
5
,
0
])
>>> states
=
[
0
,
2
]
>>> mask
=
np.in1d(test, states)
>>> mask
array([
True
,
False
,
True
,
False
,
True
], dtype
=
bool
)
>>> test[mask]
array([
0
,
2
,
0
])
>>> mask
=
np.in1d(test, states, invert
=
True
)
>>> mask
array([
False
,
True
,
False
,
True
,
False
], dtype
=
bool
)
>>> test[mask]
array([
1
,
5
])
-
numpy.in1d()

2025-01-10 15:47:30
Please login to continue.