corner_foerstner
-
skimage.feature.corner_foerstner(image, sigma=1)
[source] -
Compute Foerstner corner measure response image.
This corner detector uses information from the auto-correlation matrix A:
12A
=
[(imx
*
*
2
) (imx
*
imy)]
=
[Axx Axy]
[(imx
*
imy) (imy
*
*
2
)] [Axy Ayy]
Where imx and imy are first derivatives, averaged with a gaussian filter. The corner measure is then defined as:
12w
=
det(A)
/
trace(A) (size of error ellipse)
q
=
4
*
det(A)
/
trace(A)
*
*
2
(roundness of error ellipse)
Parameters: image : ndarray
Input image.
sigma : float, optional
Standard deviation used for the Gaussian kernel, which is used as weighting function for the auto-correlation matrix.
Returns: w : ndarray
Error ellipse sizes.
q : ndarray
Roundness of error ellipse.
References
[R132] http://www.ipb.uni-bonn.de/uploads/tx_ikgpublication/foerstner87.fast.pdf [R133] http://en.wikipedia.org/wiki/Corner_detection Examples
1234567891011121314151617181920212223>>>
from
skimage.feature
import
corner_foerstner, corner_peaks
>>> square
=
np.zeros([
10
,
10
])
>>> square[
2
:
8
,
2
:
8
]
=
1
>>> square.astype(
int
)
array([[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],
[
0
,
0
,
1
,
1
,
1
,
1
,
1
,
1
,
0
,
0
],
[
0
,
0
,
1
,
1
,
1
,
1
,
1
,
1
,
0
,
0
],
[
0
,
0
,
1
,
1
,
1
,
1
,
1
,
1
,
0
,
0
],
[
0
,
0
,
1
,
1
,
1
,
1
,
1
,
1
,
0
,
0
],
[
0
,
0
,
1
,
1
,
1
,
1
,
1
,
1
,
0
,
0
],
[
0
,
0
,
1
,
1
,
1
,
1
,
1
,
1
,
0
,
0
],
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
]])
>>> w, q
=
corner_foerstner(square)
>>> accuracy_thresh
=
0.5
>>> roundness_thresh
=
0.3
>>> foerstner
=
(q > roundness_thresh)
*
(w > accuracy_thresh)
*
w
>>> corner_peaks(foerstner, min_distance
=
1
)
array([[
2
,
2
],
[
2
,
7
],
[
7
,
2
],
[
7
,
7
]])
Please login to continue.