corner_shi_tomasi
-
skimage.feature.corner_shi_tomasi(image, sigma=1)
[source] -
Compute Shi-Tomasi (Kanade-Tomasi) corner measure response image.
This corner detector uses information from the auto-correlation matrix A:
12A
=
[(imx
*
*
2
) (imx
*
imy)]
=
[Axx Axy]
[(imx
*
imy) (imy
*
*
2
)] [Axy Ayy]
Where imx and imy are first derivatives, averaged with a gaussian filter. The corner measure is then defined as the smaller eigenvalue of A:
1((Axx
+
Ayy)
-
sqrt((Axx
-
Ayy)
*
*
2
+
4
*
Axy
*
*
2
))
/
2
Parameters: image : ndarray
Input image.
sigma : float, optional
Standard deviation used for the Gaussian kernel, which is used as weighting function for the auto-correlation matrix.
Returns: response : ndarray
Shi-Tomasi response image.
References
[R140] http://kiwi.cs.dal.ca/~dparks/CornerDetection/harris.htm [R141] http://en.wikipedia.org/wiki/Corner_detection Examples
12345678910111213141516171819>>>
from
skimage.feature
import
corner_shi_tomasi, corner_peaks
>>> square
=
np.zeros([
10
,
10
])
>>> square[
2
:
8
,
2
:
8
]
=
1
>>> square.astype(
int
)
array([[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],
[
0
,
0
,
1
,
1
,
1
,
1
,
1
,
1
,
0
,
0
],
[
0
,
0
,
1
,
1
,
1
,
1
,
1
,
1
,
0
,
0
],
[
0
,
0
,
1
,
1
,
1
,
1
,
1
,
1
,
0
,
0
],
[
0
,
0
,
1
,
1
,
1
,
1
,
1
,
1
,
0
,
0
],
[
0
,
0
,
1
,
1
,
1
,
1
,
1
,
1
,
0
,
0
],
[
0
,
0
,
1
,
1
,
1
,
1
,
1
,
1
,
0
,
0
],
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
]])
>>> corner_peaks(corner_shi_tomasi(square), min_distance
=
1
)
array([[
2
,
2
],
[
2
,
7
],
[
7
,
2
],
[
7
,
7
]])
Please login to continue.