-
sklearn.decomposition.sparse_encode(X, dictionary, gram=None, cov=None, algorithm='lasso_lars', n_nonzero_coefs=None, alpha=None, copy_cov=True, init=None, max_iter=1000, n_jobs=1, check_input=True, verbose=0)
[source] -
Sparse coding
Each row of the result is the solution to a sparse coding problem. The goal is to find a sparse array
code
such that:X ~= code * dictionary
Read more in the User Guide.
Parameters: X: array of shape (n_samples, n_features) :
Data matrix
dictionary: array of shape (n_components, n_features) :
The dictionary matrix against which to solve the sparse coding of the data. Some of the algorithms assume normalized rows for meaningful output.
gram: array, shape=(n_components, n_components) :
Precomputed Gram matrix, dictionary * dictionary?
cov: array, shape=(n_components, n_samples) :
Precomputed covariance, dictionary? * X
algorithm: {?lasso_lars?, ?lasso_cd?, ?lars?, ?omp?, ?threshold?} :
lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection dictionary * X?
n_nonzero_coefs: int, 0.1 * n_features by default :
Number of nonzero coefficients to target in each column of the solution. This is only used by
algorithm=?lars?
andalgorithm=?omp?
and is overridden byalpha
in theomp
case.alpha: float, 1. by default :
If
algorithm=?lasso_lars?
oralgorithm=?lasso_cd?
,alpha
is the penalty applied to the L1 norm. Ifalgorithm=?threshold?
,alpha
is the absolute value of the threshold below which coefficients will be squashed to zero. Ifalgorithm=?omp?
,alpha
is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overridesn_nonzero_coefs
.init: array of shape (n_samples, n_components) :
Initialization value of the sparse codes. Only used if
algorithm=?lasso_cd?
.max_iter: int, 1000 by default :
Maximum number of iterations to perform if
algorithm=?lasso_cd?
.copy_cov: boolean, optional :
Whether to copy the precomputed covariance matrix; if False, it may be overwritten.
n_jobs: int, optional :
Number of parallel jobs to run.
check_input: boolean, optional :
If False, the input arrays X and dictionary will not be checked.
verbose : int, optional
Controls the verbosity; the higher, the more messages. Defaults to 0.
Returns: code: array of shape (n_samples, n_components) :
The sparse codes
sklearn.decomposition.sparse_encode()
2017-01-15 04:26:02
Please login to continue.