-
class sklearn.manifold.Isomap(n_neighbors=5, n_components=2, eigen_solver='auto', tol=0, max_iter=None, path_method='auto', neighbors_algorithm='auto', n_jobs=1)
[source] -
Isomap Embedding
Non-linear dimensionality reduction through Isometric Mapping
Read more in the User Guide.
Parameters: n_neighbors : integer
number of neighbors to consider for each point.
n_components : integer
number of coordinates for the manifold
eigen_solver : [?auto?|?arpack?|?dense?]
?auto? : Attempt to choose the most efficient solver for the given problem.
?arpack? : Use Arnoldi decomposition to find the eigenvalues and eigenvectors.
?dense? : Use a direct solver (i.e. LAPACK) for the eigenvalue decomposition.
tol : float
Convergence tolerance passed to arpack or lobpcg. not used if eigen_solver == ?dense?.
max_iter : integer
Maximum number of iterations for the arpack solver. not used if eigen_solver == ?dense?.
path_method : string [?auto?|?FW?|?D?]
Method to use in finding shortest path.
?auto? : attempt to choose the best algorithm automatically.
?FW? : Floyd-Warshall algorithm.
?D? : Dijkstra?s algorithm.
neighbors_algorithm : string [?auto?|?brute?|?kd_tree?|?ball_tree?]
Algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors instance.
n_jobs : int, optional (default = 1)
The number of parallel jobs to run. If
-1
, then the number of jobs is set to the number of CPU cores.Attributes: embedding_ : array-like, shape (n_samples, n_components)
Stores the embedding vectors.
kernel_pca_ : object
KernelPCA
object used to implement the embedding.training_data_ : array-like, shape (n_samples, n_features)
Stores the training data.
nbrs_ : sklearn.neighbors.NearestNeighbors instance
Stores nearest neighbors instance, including BallTree or KDtree if applicable.
dist_matrix_ : array-like, shape (n_samples, n_samples)
Stores the geodesic distance matrix of training data.
References
[R185] Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290 (5500) Methods
fit
(X[, y])Compute the embedding vectors for data X fit_transform
(X[, y])Fit the model from data in X and transform X. get_params
([deep])Get parameters for this estimator. reconstruction_error
()Compute the reconstruction error for the embedding. set_params
(\*\*params)Set the parameters of this estimator. transform
(X)Transform X. -
__init__(n_neighbors=5, n_components=2, eigen_solver='auto', tol=0, max_iter=None, path_method='auto', neighbors_algorithm='auto', n_jobs=1)
[source]
-
fit(X, y=None)
[source] -
Compute the embedding vectors for data X
Parameters: X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors}
Sample data, shape = (n_samples, n_features), in the form of a numpy array, precomputed tree, or NearestNeighbors object.
Returns: self : returns an instance of self.
-
fit_transform(X, y=None)
[source] -
Fit the model from data in X and transform X.
Parameters: X: {array-like, sparse matrix, BallTree, KDTree} :
Training vector, where n_samples in the number of samples and n_features is the number of features.
Returns: X_new: array-like, shape (n_samples, n_components) :
-
get_params(deep=True)
[source] -
Get parameters for this estimator.
Parameters: deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: params : mapping of string to any
Parameter names mapped to their values.
-
reconstruction_error()
[source] -
Compute the reconstruction error for the embedding.
Returns: reconstruction_error : float Notes
The cost function of an isomap embedding is
E = frobenius_norm[K(D) - K(D_fit)] / n_samples
Where D is the matrix of distances for the input data X, D_fit is the matrix of distances for the output embedding X_fit, and K is the isomap kernel:
K(D) = -0.5 * (I - 1/n_samples) * D^2 * (I - 1/n_samples)
-
set_params(**params)
[source] -
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it?s possible to update each component of a nested object.Returns: self :
-
transform(X)
[source] -
Transform X.
This is implemented by linking the points X into the graph of geodesic distances of the training data. First the
n_neighbors
nearest neighbors of X are found in the training data, and from these the shortest geodesic distances from each point in X to each point in the training data are computed in order to construct the kernel. The embedding of X is the projection of this kernel onto the embedding vectors of the training set.Parameters: X: array-like, shape (n_samples, n_features) : Returns: X_new: array-like, shape (n_samples, n_components) :
-
manifold.Isomap()
Examples using
2017-01-15 04:23:54
Please login to continue.