pipeline.FeatureUnion()

class sklearn.pipeline.FeatureUnion(transformer_list, n_jobs=1, transformer_weights=None) [source]

Concatenates results of multiple transformer objects.

This estimator applies a list of transformer objects in parallel to the input data, then concatenates the results. This is useful to combine several feature extraction mechanisms into a single transformer.

Parameters of the transformers may be set using its name and the parameter name separated by a ?__?. A transformer may be replaced entirely by setting the parameter with its name to another transformer, or removed by setting to None.

Read more in the User Guide.

Parameters:

transformer_list: list of (string, transformer) tuples :

List of transformer objects to be applied to the data. The first half of each tuple is the name of the transformer.

n_jobs: int, optional :

Number of jobs to run in parallel (default 1).

transformer_weights: dict, optional :

Multiplicative weights for features per transformer. Keys are transformer names, values the weights.

Methods

fit(X[, y]) Fit all transformers using X.
fit_transform(X[, y]) Fit all transformers, transform the data and concatenate results.
get_feature_names() Get feature names from all transformers.
get_params([deep]) Get parameters for this estimator.
set_params(\*\*kwargs) Set the parameters of this estimator.
transform(X) Transform X separately by each transformer, concatenate results.
__init__(transformer_list, n_jobs=1, transformer_weights=None) [source]
fit(X, y=None) [source]

Fit all transformers using X.

Parameters:

X : iterable or array-like, depending on transformers

Input data, used to fit transformers.

y : array-like, shape (n_samples, ...), optional

Targets for supervised learning.

Returns:

self : FeatureUnion

This estimator

fit_transform(X, y=None, **fit_params) [source]

Fit all transformers, transform the data and concatenate results.

Parameters:

X : iterable or array-like, depending on transformers

Input data to be transformed.

y : array-like, shape (n_samples, ...), optional

Targets for supervised learning.

Returns:

X_t : array-like or sparse matrix, shape (n_samples, sum_n_components)

hstack of results of transformers. sum_n_components is the sum of n_components (output dimension) over transformers.

get_feature_names() [source]

Get feature names from all transformers.

Returns:

feature_names : list of strings

Names of the features produced by transform.

get_params(deep=True) [source]

Get parameters for this estimator.

Parameters:

deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:

params : mapping of string to any

Parameter names mapped to their values.

set_params(**kwargs) [source]

Set the parameters of this estimator.

Valid parameter keys can be listed with get_params().

Returns: self :
transform(X) [source]

Transform X separately by each transformer, concatenate results.

Parameters:

X : iterable or array-like, depending on transformers

Input data to be transformed.

Returns:

X_t : array-like or sparse matrix, shape (n_samples, sum_n_components)

hstack of results of transformers. sum_n_components is the sum of n_components (output dimension) over transformers.

Examples using sklearn.pipeline.FeatureUnion

doc_scikit_learn
2017-01-15 04:24:55
Comments
Leave a Comment

Please login to continue.