-
class sklearn.preprocessing.LabelEncoder
[source] -
Encode labels with value between 0 and n_classes-1.
Read more in the User Guide.
Attributes: classes_ : array of shape (n_class,)
Holds the label for each class.
See also
-
sklearn.preprocessing.OneHotEncoder
- encode categorical integer features using a one-hot aka one-of-K scheme.
Examples
LabelEncoder
can be used to normalize labels.12345678910>>>
from
sklearn
import
preprocessing
>>> le
=
preprocessing.LabelEncoder()
>>> le.fit([
1
,
2
,
2
,
6
])
LabelEncoder()
>>> le.classes_
array([
1
,
2
,
6
])
>>> le.transform([
1
,
1
,
2
,
6
])
array([
0
,
0
,
1
,
2
]...)
>>> le.inverse_transform([
0
,
0
,
1
,
2
])
array([
1
,
1
,
2
,
6
])
It can also be used to transform non-numerical labels (as long as they are hashable and comparable) to numerical labels.
123456789>>> le
=
preprocessing.LabelEncoder()
>>> le.fit([
"paris"
,
"paris"
,
"tokyo"
,
"amsterdam"
])
LabelEncoder()
>>>
list
(le.classes_)
[
'amsterdam'
,
'paris'
,
'tokyo'
]
>>> le.transform([
"tokyo"
,
"tokyo"
,
"paris"
])
array([
2
,
2
,
1
]...)
>>>
list
(le.inverse_transform([
2
,
2
,
1
]))
[
'tokyo'
,
'tokyo'
,
'paris'
]
Methods
fit
(y)Fit label encoder fit_transform
(y)Fit label encoder and return encoded labels get_params
([deep])Get parameters for this estimator. inverse_transform
(y)Transform labels back to original encoding. set_params
(\*\*params)Set the parameters of this estimator. transform
(y)Transform labels to normalized encoding. -
__init__()
-
x.__init__(...) initializes x; see help(type(x)) for signature
-
fit(y)
[source] -
Fit label encoder
Parameters: y : array-like of shape (n_samples,)
Target values.
Returns: self : returns an instance of self.
-
fit_transform(y)
[source] -
Fit label encoder and return encoded labels
Parameters: y : array-like of shape [n_samples]
Target values.
Returns: y : array-like of shape [n_samples]
-
get_params(deep=True)
[source] -
Get parameters for this estimator.
Parameters: deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: params : mapping of string to any
Parameter names mapped to their values.
-
inverse_transform(y)
[source] -
Transform labels back to original encoding.
Parameters: y : numpy array of shape [n_samples]
Target values.
Returns: y : numpy array of shape [n_samples]
-
set_params(**params)
[source] -
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it?s possible to update each component of a nested object.Returns: self :
-
transform(y)
[source] -
Transform labels to normalized encoding.
Parameters: y : array-like of shape [n_samples]
Target values.
Returns: y : array-like of shape [n_samples]
-
preprocessing.LabelEncoder

2025-01-10 15:47:30
Please login to continue.