-
class sklearn.tree.ExtraTreeRegressor(criterion='mse', splitter='random', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto', random_state=None, min_impurity_split=1e-07, max_leaf_nodes=None)
[source] -
An extremely randomized tree regressor.
Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups, random splits are drawn for each of the
max_features
randomly selected features and the best split among those is chosen. Whenmax_features
is set 1, this amounts to building a totally random decision tree.Warning: Extra-trees should only be used within ensemble methods.
Read more in the User Guide.
See also
ExtraTreeClassifier
,ExtraTreesClassifier
,ExtraTreesRegressor
References
[R251] P. Geurts, D. Ernst., and L. Wehenkel, ?Extremely randomized trees?, Machine Learning, 63(1), 3-42, 2006. Methods
apply
(X[, check_input])Returns the index of the leaf that each sample is predicted as. decision_path
(X[, check_input])Return the decision path in the tree fit
(X, y[, sample_weight, check_input, ...])Build a decision tree regressor from the training set (X, y). fit_transform
(X[, y])Fit to data, then transform it. get_params
([deep])Get parameters for this estimator. predict
(X[, check_input])Predict class or regression value for X. score
(X, y[, sample_weight])Returns the coefficient of determination R^2 of the prediction. set_params
(\*\*params)Set the parameters of this estimator. transform
(\*args, \*\*kwargs)DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19. -
__init__(criterion='mse', splitter='random', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto', random_state=None, min_impurity_split=1e-07, max_leaf_nodes=None)
[source]
-
apply(X, check_input=True)
[source] -
Returns the index of the leaf that each sample is predicted as.
New in version 0.17.
Parameters: X : array_like or sparse matrix, shape = [n_samples, n_features]
The input samples. Internally, it will be converted to
dtype=np.float32
and if a sparse matrix is provided to a sparsecsr_matrix
.check_input : boolean, (default=True)
Allow to bypass several input checking. Don?t use this parameter unless you know what you do.
Returns: X_leaves : array_like, shape = [n_samples,]
For each datapoint x in X, return the index of the leaf x ends up in. Leaves are numbered within
[0; self.tree_.node_count)
, possibly with gaps in the numbering.
-
decision_path(X, check_input=True)
[source] -
Return the decision path in the tree
New in version 0.18.
Parameters: X : array_like or sparse matrix, shape = [n_samples, n_features]
The input samples. Internally, it will be converted to
dtype=np.float32
and if a sparse matrix is provided to a sparsecsr_matrix
.check_input : boolean, (default=True)
Allow to bypass several input checking. Don?t use this parameter unless you know what you do.
Returns: indicator : sparse csr array, shape = [n_samples, n_nodes]
Return a node indicator matrix where non zero elements indicates that the samples goes through the nodes.
-
feature_importances_
-
Return the feature importances.
The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance.
Returns: feature_importances_ : array, shape = [n_features]
-
fit(X, y, sample_weight=None, check_input=True, X_idx_sorted=None)
[source] -
Build a decision tree regressor from the training set (X, y).
Parameters: X : array-like or sparse matrix, shape = [n_samples, n_features]
The training input samples. Internally, it will be converted to
dtype=np.float32
and if a sparse matrix is provided to a sparsecsc_matrix
.y : array-like, shape = [n_samples] or [n_samples, n_outputs]
The target values (real numbers). Use
dtype=np.float64
andorder='C'
for maximum efficiency.sample_weight : array-like, shape = [n_samples] or None
Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node.
check_input : boolean, (default=True)
Allow to bypass several input checking. Don?t use this parameter unless you know what you do.
X_idx_sorted : array-like, shape = [n_samples, n_features], optional
The indexes of the sorted training input samples. If many tree are grown on the same dataset, this allows the ordering to be cached between trees. If None, the data will be sorted here. Don?t use this parameter unless you know what to do.
Returns: self : object
Returns self.
-
fit_transform(X, y=None, **fit_params)
[source] -
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters: X : numpy array of shape [n_samples, n_features]
Training set.
y : numpy array of shape [n_samples]
Target values.
Returns: X_new : numpy array of shape [n_samples, n_features_new]
Transformed array.
-
get_params(deep=True)
[source] -
Get parameters for this estimator.
Parameters: deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: params : mapping of string to any
Parameter names mapped to their values.
-
predict(X, check_input=True)
[source] -
Predict class or regression value for X.
For a classification model, the predicted class for each sample in X is returned. For a regression model, the predicted value based on X is returned.
Parameters: X : array-like or sparse matrix of shape = [n_samples, n_features]
The input samples. Internally, it will be converted to
dtype=np.float32
and if a sparse matrix is provided to a sparsecsr_matrix
.check_input : boolean, (default=True)
Allow to bypass several input checking. Don?t use this parameter unless you know what you do.
Returns: y : array of shape = [n_samples] or [n_samples, n_outputs]
The predicted classes, or the predict values.
-
score(X, y, sample_weight=None)
[source] -
Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.
Parameters: X : array-like, shape = (n_samples, n_features)
Test samples.
y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True values for X.
sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns: score : float
R^2 of self.predict(X) wrt. y.
-
set_params(**params)
[source] -
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it?s possible to update each component of a nested object.Returns: self :
-
transform(*args, **kwargs)
[source] -
DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19. Use SelectFromModel instead.
Reduce X to its most important features.
Usescoef_
orfeature_importances_
to determine the most important features. For models with acoef_
for each class, the absolute sum over the classes is used.Parameters: X : array or scipy sparse matrix of shape [n_samples, n_features]
The input samples.
- threshold
-
The threshold value to use for feature selection. Features whose importance is greater or equal are kept while the others are discarded. If ?median? (resp. ?mean?), then the threshold value is the median (resp. the mean) of the feature importances. A scaling factor (e.g., ?1.25*mean?) may also be used. If None and if available, the object attribute
threshold
is used. Otherwise, ?mean? is used by default.
Returns:
X_r : array of shape [n_samples, n_selected_features]
The input samples with only the selected features.
-
tree.ExtraTreeRegressor()
2017-01-15 04:27:20
Please login to continue.