Sample usage of Nearest Centroid classification. It will plot the decision boundaries for each class.
Out:
1 2 | None 0.813333333333 0.2 0.82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | print (__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import datasets from sklearn.neighbors import NearestCentroid n_neighbors = 15 # import some data to play with iris = datasets.load_iris() X = iris.data[:, : 2 ] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = . 02 # step size in the mesh # Create color maps cmap_light = ListedColormap([ '#FFAAAA' , '#AAFFAA' , '#AAAAFF' ]) cmap_bold = ListedColormap([ '#FF0000' , '#00FF00' , '#0000FF' ]) for shrinkage in [ None , . 2 ]: # we create an instance of Neighbours Classifier and fit the data. clf = NearestCentroid(shrink_threshold = shrinkage) clf.fit(X, y) y_pred = clf.predict(X) print (shrinkage, np.mean(y = = y_pred)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. x_min, x_max = X[:, 0 ]. min () - 1 , X[:, 0 ]. max () + 1 y_min, y_max = X[:, 1 ]. min () - 1 , X[:, 1 ]. max () + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap = cmap_light) # Plot also the training points plt.scatter(X[:, 0 ], X[:, 1 ], c = y, cmap = cmap_bold) plt.title( "3-Class classification (shrink_threshold=%r)" % shrinkage) plt.axis( 'tight' ) plt.show() |
Total running time of the script: (0 minutes 0.177 seconds)
Download Python source code:
plot_nearest_centroid.py
Download IPython notebook:
plot_nearest_centroid.ipynb
Please login to continue.