Sample usage of Nearest Neighbors classification. It will plot the decision boundaries for each class.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | print (__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import neighbors, datasets n_neighbors = 15 # import some data to play with iris = datasets.load_iris() X = iris.data[:, : 2 ] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = . 02 # step size in the mesh # Create color maps cmap_light = ListedColormap([ '#FFAAAA' , '#AAFFAA' , '#AAAAFF' ]) cmap_bold = ListedColormap([ '#FF0000' , '#00FF00' , '#0000FF' ]) for weights in [ 'uniform' , 'distance' ]: # we create an instance of Neighbours Classifier and fit the data. clf = neighbors.KNeighborsClassifier(n_neighbors, weights = weights) clf.fit(X, y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. x_min, x_max = X[:, 0 ]. min () - 1 , X[:, 0 ]. max () + 1 y_min, y_max = X[:, 1 ]. min () - 1 , X[:, 1 ]. max () + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap = cmap_light) # Plot also the training points plt.scatter(X[:, 0 ], X[:, 1 ], c = y, cmap = cmap_bold) plt.xlim(xx. min (), xx. max ()) plt.ylim(yy. min (), yy. max ()) plt.title( "3-Class classification (k = %i, weights = '%s')" % (n_neighbors, weights)) plt.show() |
Total running time of the script: (0 minutes 0.409 seconds)
Download Python source code:
plot_classification.py
Download IPython notebook:
plot_classification.ipynb
Please login to continue.