Nearest Neighbors Classification

Sample usage of Nearest Neighbors classification. It will plot the decision boundaries for each class.

  • ../../_images/sphx_glr_plot_classification_001.png
  • ../../_images/sphx_glr_plot_classification_002.png
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
print(__doc__)
 
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import neighbors, datasets
 
n_neighbors = 15
 
# import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2# we only take the first two features. We could
                      # avoid this ugly slicing by using a two-dim dataset
y = iris.target
 
h = .02  # step size in the mesh
 
# Create color maps
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])
 
for weights in ['uniform', 'distance']:
    # we create an instance of Neighbours Classifier and fit the data.
    clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
    clf.fit(X, y)
 
    # Plot the decision boundary. For that, we will assign a color to each
    # point in the mesh [x_min, x_max]x[y_min, y_max].
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                         np.arange(y_min, y_max, h))
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
 
    # Put the result into a color plot
    Z = Z.reshape(xx.shape)
    plt.figure()
    plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
 
    # Plot also the training points
    plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.title("3-Class classification (k = %i, weights = '%s')"
              % (n_neighbors, weights))
 
plt.show()

Total running time of the script: (0 minutes 0.409 seconds)

Download Python source code: plot_classification.py
Download IPython notebook: plot_classification.ipynb
doc_scikit_learn
2025-01-10 15:47:30
Comments
Leave a Comment

Please login to continue.