tf.contrib.bayesflow.stochastic_tensor.NormalTensor.value()

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.value(name='value')

tf.svd()

tf.svd(tensor, compute_uv=True, full_matrices=False, name=None) Computes the singular value decompositions of one or more matrices. Computes the SVD of each inner matrix in tensor such that tensor[..., :, :] = u[..., :, :] * diag(s[..., :, :]) * transpose(v[..., :, :]) # a is a tensor. # s is a tensor of singular values. # u is a tensor of left singular vectors. # v is a tensor of right singular vectors. s, u, v = svd(a) s = svd(a, compute_uv=False) Args: matrix: Tensor of shape [..., M, N].

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.value_type

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.value_type

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.__init__()

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.clone()

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.clone(name=None, **dist_args)

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor

class tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor TransformedDistributionTensor is a StochasticTensor backed by the distribution TransformedDistribution.

tf.contrib.distributions.TransformedDistribution.log_pdf()

tf.contrib.distributions.TransformedDistribution.log_pdf(value, name='log_pdf') Log probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.errors.CancelledError.__init__()

tf.errors.CancelledError.__init__(node_def, op, message) Creates a CancelledError.

tf.contrib.distributions.TransformedDistribution.log_cdf()

tf.contrib.distributions.TransformedDistribution.log_cdf(value, name='log_cdf') Log cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: log_cdf(x) := Log[ P[X <= x] ] Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1. Args: value: float or double Tensor. name: The name to give this op. Returns: logcdf: a Tensor of shape sample_

tf.contrib.distributions.DirichletMultinomial

class tf.contrib.distributions.DirichletMultinomial DirichletMultinomial mixture distribution. This distribution is parameterized by a vector alpha of concentration parameters for k classes and n, the counts per each class..