tf.errors.UnknownError

class tf.errors.UnknownError Unknown error. An example of where this error may be returned is if a Status value received from another address space belongs to an error-space that is not known to this address space. Also errors raised by APIs that do not return enough error information may be converted to this error.

tf.nn.rnn_cell.GRUCell.output_size

tf.nn.rnn_cell.GRUCell.output_size

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor

class tf.contrib.bayesflow.stochastic_tensor.StochasticTensor StochasticTensor is a BaseStochasticTensor backed by a distribution.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.mean()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.mean(name='mean')

tf.contrib.distributions.Dirichlet.log_prob()

tf.contrib.distributions.Dirichlet.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Additional documentation from Dirichlet: Note that the input must be a non-negative tensor with dtype dtype and whose shape can be broadcast with self.alpha. For fixed leading dimensions, the last dimension represents counts for the corresponding Dirichlet distribution in self.alpha. x is only legal if it sums up to one. Args: value: float or double Tensor.

tf.contrib.distributions.MultivariateNormalCholesky.mu

tf.contrib.distributions.MultivariateNormalCholesky.mu

tf.contrib.distributions.InverseGamma.variance()

tf.contrib.distributions.InverseGamma.variance(name='variance') Variance. Additional documentation from InverseGamma: Variance for inverse gamma is defined only for alpha > 2. If self.allow_nan_stats is False, an exception will be raised rather than returning NaN.

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.value()

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.value(name='value')

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.graph

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.graph

tf.contrib.distributions.WishartFull.cholesky_input_output_matrices

tf.contrib.distributions.WishartFull.cholesky_input_output_matrices Boolean indicating if Tensor input/outputs are Cholesky factorized.