tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.loss()

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.loss(final_loss, name=None)

tf.nn.rnn_cell.LSTMCell.__init__()

tf.nn.rnn_cell.LSTMCell.__init__(num_units, input_size=None, use_peepholes=False, cell_clip=None, initializer=None, num_proj=None, proj_clip=None, num_unit_shards=1, num_proj_shards=1, forget_bias=1.0, state_is_tuple=True, activation=tanh) Initialize the parameters for an LSTM cell. Args: num_units: int, The number of units in the LSTM cell input_size: Deprecated and unused. use_peepholes: bool, set True to enable diagonal/peephole connections. cell_clip: (optional) A float value, if provi

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.graph

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.graph

tf.SparseTensorValue.indices

tf.SparseTensorValue.indices Alias for field number 0

tensorflow::WritableFile::Append()

virtual Status tensorflow::WritableFile::Append(const StringPiece &data)=0

tf.contrib.distributions.Gamma.dtype

tf.contrib.distributions.Gamma.dtype The DType of Tensors handled by this Distribution.

tf.contrib.distributions.BaseDistribution

class tf.contrib.distributions.BaseDistribution Simple abstract base class for probability distributions. Implementations of core distributions to be included in the distributions module should subclass Distribution. This base class may be useful to users that want to fulfill a simpler distribution contract.

tf.errors.AbortedError.__init__()

tf.errors.AbortedError.__init__(node_def, op, message) Creates an AbortedError.

tf.contrib.distributions.WishartFull.dtype

tf.contrib.distributions.WishartFull.dtype The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Distribution.entropy()

tf.contrib.distributions.Distribution.entropy(name='entropy') Shanon entropy in nats.