tf.errors.AbortedError.__init__()

tf.errors.AbortedError.__init__(node_def, op, message) Creates an AbortedError.

tf.contrib.distributions.WishartFull.dtype

tf.contrib.distributions.WishartFull.dtype The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Distribution.entropy()

tf.contrib.distributions.Distribution.entropy(name='entropy') Shanon entropy in nats.

tf.contrib.distributions.Normal.validate_args

tf.contrib.distributions.Normal.validate_args Python boolean indicated possibly expensive checks are enabled.

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.mean()

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.mean(name='mean')

tensorflow::WritableFile

A file abstraction for sequential writing. The implementation must provide buffering since callers may append small fragments at a time to the file. Member Details tensorflow::WritableFile::WritableFile() tensorflow::WritableFile::~WritableFile() virtual Status tensorflow::WritableFile::Append(const StringPiece &data)=0 virtual Status tensorflow::WritableFile::Close()=0 virtual Status tensorflow::WritableFile::Flush()=0 virtual Status tensorflow::WritableFile::Sync()=0

tf.contrib.distributions.Exponential.log_prob()

tf.contrib.distributions.Exponential.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.Beta.a

tf.contrib.distributions.Beta.a Shape parameter.

tf.contrib.distributions.Normal.dtype

tf.contrib.distributions.Normal.dtype The DType of Tensors handled by this Distribution.

tf.QueueBase.size()

tf.QueueBase.size(name=None) Compute the number of elements in this queue. Args: name: A name for the operation (optional). Returns: A scalar tensor containing the number of elements in this queue.