tf.contrib.distributions.Uniform.entropy()

tf.contrib.distributions.Uniform.entropy(name='entropy') Shanon entropy in nats.

tf.contrib.metrics.streaming_mean()

tf.contrib.metrics.streaming_mean(values, weights=None, metrics_collections=None, updates_collections=None, name=None) Computes the (weighted) mean of the given values. The streaming_mean function creates two local variables, total and count that are used to compute the average of values. This average is ultimately returned as mean which is an idempotent operation that simply divides total by count. For estimation of the metric over a stream of data, the function creates an update_op operation

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.loss()

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.loss(final_loss, name='Loss')

tf.contrib.losses.mean_squared_error()

tf.contrib.losses.mean_squared_error(*args, **kwargs) Adds a Sum-of-Squares loss to the training procedure. (deprecated) THIS FUNCTION IS DEPRECATED. It will be removed after 2016-10-01. Instructions for updating: Use mean_squared_error. weight acts as a coefficient for the loss. If a scalar is provided, then the loss is simply scaled by the given value. If weight is a tensor of size [batch_size], then the total loss for each sample of the batch is rescaled by the corresponding element in the

tf.contrib.distributions.QuantizedDistribution.log_cdf()

tf.contrib.distributions.QuantizedDistribution.log_cdf(value, name='log_cdf') Log cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: log_cdf(x) := Log[ P[X <= x] ] Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1. Additional documentation from QuantizedDistribution: For whole numbers y, cdf(y) := P[Y <= y] = 1, if y >

tf.contrib.distributions.ExponentialWithSoftplusLam.mode()

tf.contrib.distributions.ExponentialWithSoftplusLam.mode(name='mode') Mode. Additional documentation from Gamma: The mode of a gamma distribution is (alpha - 1) / beta when alpha > 1, and NaN otherwise. If self.allow_nan_stats is False, an exception will be raised rather than returning NaN.

tf.contrib.learn.read_batch_record_features()

tf.contrib.learn.read_batch_record_features(file_pattern, batch_size, features, randomize_input=True, num_epochs=None, queue_capacity=10000, reader_num_threads=1, parser_num_threads=1, name='dequeue_record_examples') Reads TFRecord, queues, batches and parses Example proto. See more detailed description in read_examples. Args: file_pattern: List of files or pattern of file paths containing Example records. See tf.gfile.Glob for pattern rules. batch_size: An int or scalar Tensor specifying th

tf.contrib.distributions.Bernoulli.param_shapes()

tf.contrib.distributions.Bernoulli.param_shapes(cls, sample_shape, name='DistributionParamShapes') Shapes of parameters given the desired shape of a call to sample(). Subclasses should override static method _param_shapes. Args: sample_shape: Tensor or python list/tuple. Desired shape of a call to sample(). name: name to prepend ops with. Returns: dict of parameter name to Tensor shapes.

tf.contrib.distributions.Chi2.survival_function()

tf.contrib.distributions.Chi2.survival_function(value, name='survival_function') Survival function. Given random variable X, the survival function is defined: survival_function(x) = P[X > x] = 1 - P[X <= x] = 1 - cdf(x). Args: value: float or double Tensor. name: The name to give this op. Returns: Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Multinomial.parameters

tf.contrib.distributions.Multinomial.parameters Dictionary of parameters used by this Distribution.