tf.contrib.graph_editor.matcher

class tf.contrib.graph_editor.matcher Graph match class.

tf.contrib.distributions.Uniform.sample()

tf.contrib.distributions.Uniform.sample(sample_shape=(), seed=None, name='sample') Generate samples of the specified shape. Note that a call to sample() without arguments will generate a single sample. Args: sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.training.SequenceQueueingStateSaver.batch_size

tf.contrib.training.SequenceQueueingStateSaver.batch_size

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.clone()

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.clone(name=None, **dist_args)

tf.contrib.learn.monitors.ExportMonitor.step_begin()

tf.contrib.learn.monitors.ExportMonitor.step_begin(step) Overrides BaseMonitor.step_begin. When overriding this method, you must call the super implementation. Args: step: int, the current value of the global step. Returns: A list, the result of every_n_step_begin, if that was called this step, or an empty list otherwise. Raises: ValueError: if called more than once during a step.

tf.TensorArray.size()

tf.TensorArray.size(name=None) Return the size of the TensorArray.

tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.name

tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.name

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.name

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.name

tf.contrib.distributions.QuantizedDistribution.param_shapes()

tf.contrib.distributions.QuantizedDistribution.param_shapes(cls, sample_shape, name='DistributionParamShapes') Shapes of parameters given the desired shape of a call to sample(). Subclasses should override static method _param_shapes. Args: sample_shape: Tensor or python list/tuple. Desired shape of a call to sample(). name: name to prepend ops with. Returns: dict of parameter name to Tensor shapes.

tf.image.central_crop()

tf.image.central_crop(image, central_fraction) Crop the central region of the image. Remove the outer parts of an image but retain the central region of the image along each dimension. If we specify central_fraction = 0.5, this function returns the region marked with "X" in the below diagram. -------- | | | XXXX | | XXXX | | | where "X" is the central 50% of the image. -------- Args: image: 3-D float Tensor of shape [height, width, depth] central_fraction: float (0, 1]