tf.contrib.learn.TensorFlowRNNRegressor.fit()

tf.contrib.learn.TensorFlowRNNRegressor.fit(x, y, steps=None, monitors=None, logdir=None) Neural network model from provided model_fn and training data. Note: called first time constructs the graph and initializers variables. Consecutives times it will continue training the same model. This logic follows partial_fit() interface in scikit-learn. To restart learning, create new estimator. Args: x: matrix or tensor of shape [n_samples, n_features...]. Can be iterator that returns arrays of featur

tf.contrib.distributions.Binomial.validate_args

tf.contrib.distributions.Binomial.validate_args Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.pmf()

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.entropy()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.entropy(name='entropy')

tf.contrib.rnn.LayerNormBasicLSTMCell.__init__()

tf.contrib.rnn.LayerNormBasicLSTMCell.__init__(num_units, forget_bias=1.0, input_size=None, activation=tanh, layer_norm=True, norm_gain=1.0, norm_shift=0.0, dropout_keep_prob=1.0, dropout_prob_seed=None) Initializes the basic LSTM cell. Args: num_units: int, The number of units in the LSTM cell. forget_bias: float, The bias added to forget gates (see above). input_size: Deprecated and unused. activation: Activation function of the inner states. layer_norm: If True, layer normalization wil

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.loss()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.loss(final_loss, name='Loss')

tf.contrib.distributions.BernoulliWithSigmoidP

class tf.contrib.distributions.BernoulliWithSigmoidP Bernoulli with p = sigmoid(p).

tf.contrib.distributions.Normal.parameters

tf.contrib.distributions.Normal.parameters Dictionary of parameters used by this Distribution.

tf.contrib.distributions.LaplaceWithSoftplusScale.survival_function()

tf.contrib.distributions.LaplaceWithSoftplusScale.survival_function(value, name='survival_function') Survival function. Given random variable X, the survival function is defined: survival_function(x) = P[X > x] = 1 - P[X <= x] = 1 - cdf(x). Args: value: float or double Tensor. name: The name to give this op. Returns: Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.value_type

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.value_type