tf.contrib.learn.monitors.CaptureVariable.values

tf.contrib.learn.monitors.CaptureVariable.values Returns the values captured so far. Returns: dict mapping int step numbers to that values of the variable at the respective step.

tf.inv()

tf.inv(x, name=None) Computes the reciprocal of x element-wise. I.e., \(y = 1 / x\). Args: x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128. name: A name for the operation (optional). Returns: A Tensor. Has the same type as x.

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.value()

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.value(name='value')

tf.contrib.distributions.Bernoulli.entropy()

tf.contrib.distributions.Bernoulli.entropy(name='entropy') Shanon entropy in nats.

tf.contrib.distributions.ExponentialWithSoftplusLam.parameters

tf.contrib.distributions.ExponentialWithSoftplusLam.parameters Dictionary of parameters used by this Distribution.

tf.contrib.distributions.BetaWithSoftplusAB.log_prob()

tf.contrib.distributions.BetaWithSoftplusAB.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.Dirichlet.pmf()

tf.contrib.distributions.Dirichlet.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.TFRecordReader.reset()

tf.TFRecordReader.reset(name=None) Restore a reader to its initial clean state. Args: name: A name for the operation (optional). Returns: The created Operation.

tf.contrib.learn.TensorFlowRNNRegressor.config

tf.contrib.learn.TensorFlowRNNRegressor.config

tf.contrib.distributions.Bernoulli.pdf()

tf.contrib.distributions.Bernoulli.pdf(value, name='pdf') Probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.