tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.variance()

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.variance(name='variance') Variance. Additional documentation from InverseGamma: Variance for inverse gamma is defined only for alpha > 2. If self.allow_nan_stats is False, an exception will be raised rather than returning NaN.

tf.contrib.distributions.InverseGamma.pdf()

tf.contrib.distributions.InverseGamma.pdf(value, name='pdf') Probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.learn.monitors.CheckpointSaver.epoch_end()

tf.contrib.learn.monitors.CheckpointSaver.epoch_end(epoch) End epoch. Args: epoch: int, the epoch number. Raises: ValueError: if we've not begun an epoch, or epoch number does not match.

tf.contrib.learn.monitors.EveryN.step_begin()

tf.contrib.learn.monitors.EveryN.step_begin(step) Overrides BaseMonitor.step_begin. When overriding this method, you must call the super implementation. Args: step: int, the current value of the global step. Returns: A list, the result of every_n_step_begin, if that was called this step, or an empty list otherwise. Raises: ValueError: if called more than once during a step.

tf.contrib.learn.TensorFlowEstimator.config

tf.contrib.learn.TensorFlowEstimator.config

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.value_type

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.value_type

tf.TextLineReader.serialize_state()

tf.TextLineReader.serialize_state(name=None) Produce a string tensor that encodes the state of a reader. Not all Readers support being serialized, so this can produce an Unimplemented error. Args: name: A name for the operation (optional). Returns: A string Tensor.

tf.contrib.learn.monitors.ValidationMonitor.post_step()

tf.contrib.learn.monitors.ValidationMonitor.post_step(step, session)

tf.contrib.learn.monitors.PrintTensor.set_estimator()

tf.contrib.learn.monitors.PrintTensor.set_estimator(estimator) A setter called automatically by the target estimator. If the estimator is locked, this method does nothing. Args: estimator: the estimator that this monitor monitors. Raises: ValueError: if the estimator is None.

tf.contrib.distributions.Distribution.is_reparameterized

tf.contrib.distributions.Distribution.is_reparameterized