tf.contrib.learn.TensorFlowRNNRegressor.get_variable_value()

tf.contrib.learn.TensorFlowRNNRegressor.get_variable_value(name) Returns value of the variable given by name. Args: name: string, name of the tensor. Returns: Numpy array - value of the tensor.

tf.contrib.distributions.Bernoulli.get_batch_shape()

tf.contrib.distributions.Bernoulli.get_batch_shape() Shape of a single sample from a single event index as a TensorShape. Same meaning as batch_shape. May be only partially defined. Returns: batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Laplace.is_reparameterized

tf.contrib.distributions.Laplace.is_reparameterized

tensorflow::Env::GetSymbolFromLibrary()

virtual Status tensorflow::Env::GetSymbolFromLibrary(void *handle, const char *symbol_name, void **symbol)=0

tf.contrib.distributions.ExponentialWithSoftplusLam.variance()

tf.contrib.distributions.ExponentialWithSoftplusLam.variance(name='variance') Variance.

tf.TensorArray.handle

tf.TensorArray.handle The reference to the TensorArray.

tf.PaddingFIFOQueue

class tf.PaddingFIFOQueue A FIFOQueue that supports batching variable-sized tensors by padding. A PaddingFIFOQueue may contain components with dynamic shape, while also supporting dequeue_many. See the constructor for more details. See tf.QueueBase for a description of the methods on this class.

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.loss()

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.loss(final_loss, name='Loss')

tf.contrib.distributions.LaplaceWithSoftplusScale.is_continuous

tf.contrib.distributions.LaplaceWithSoftplusScale.is_continuous