tf.contrib.distributions.Bernoulli.log_survival_function()

tf.contrib.distributions.Bernoulli.log_survival_function(value, name='log_survival_function') Log survival function. Given random variable X, the survival function is defined: log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ] Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1. Args: value: float or double T

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.mean()

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.mean(name='mean')

tf.FixedLengthRecordReader.num_work_units_completed()

tf.FixedLengthRecordReader.num_work_units_completed(name=None) Returns the number of work units this reader has finished processing. Args: name: A name for the operation (optional). Returns: An int64 Tensor.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.dtype

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.dtype The DType of Tensors handled by this Distribution.

tensorflow::TensorShape::AsProto()

void tensorflow::TensorShape::AsProto(TensorShapeProto *proto) const Fill *proto from *this.

tf.IdentityReader.serialize_state()

tf.IdentityReader.serialize_state(name=None) Produce a string tensor that encodes the state of a reader. Not all Readers support being serialized, so this can produce an Unimplemented error. Args: name: A name for the operation (optional). Returns: A string Tensor.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.sigma_det()

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.sigma_det(name='sigma_det') Determinant of covariance matrix.

tf.contrib.learn.DNNRegressor.get_params()

tf.contrib.learn.DNNRegressor.get_params(deep=True) Get parameters for this estimator. Args: deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns: params : mapping of string to any Parameter names mapped to their values.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.input_dict

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.input_dict

tf.contrib.distributions.Binomial.logits

tf.contrib.distributions.Binomial.logits Log-odds.