tf.contrib.distributions.ExponentialWithSoftplusLam.variance()

tf.contrib.distributions.ExponentialWithSoftplusLam.variance(name='variance') Variance.

tf.TensorArray.handle

tf.TensorArray.handle The reference to the TensorArray.

tf.PaddingFIFOQueue

class tf.PaddingFIFOQueue A FIFOQueue that supports batching variable-sized tensors by padding. A PaddingFIFOQueue may contain components with dynamic shape, while also supporting dequeue_many. See the constructor for more details. See tf.QueueBase for a description of the methods on this class.

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.loss()

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.loss(final_loss, name='Loss')

tf.contrib.distributions.LaplaceWithSoftplusScale.is_continuous

tf.contrib.distributions.LaplaceWithSoftplusScale.is_continuous

tf.contrib.distributions.Bernoulli.log_survival_function()

tf.contrib.distributions.Bernoulli.log_survival_function(value, name='log_survival_function') Log survival function. Given random variable X, the survival function is defined: log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ] Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1. Args: value: float or double T

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.mean()

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.mean(name='mean')

tf.FixedLengthRecordReader.num_work_units_completed()

tf.FixedLengthRecordReader.num_work_units_completed(name=None) Returns the number of work units this reader has finished processing. Args: name: A name for the operation (optional). Returns: An int64 Tensor.

tensorflow::TensorShape::AsProto()

void tensorflow::TensorShape::AsProto(TensorShapeProto *proto) const Fill *proto from *this.