tf.contrib.distributions.Binomial.survival_function()

tf.contrib.distributions.Binomial.survival_function(value, name='survival_function') Survival function. Given random variable X, the survival function is defined: survival_function(x) = P[X > x] = 1 - P[X <= x] = 1 - cdf(x). Args: value: float or double Tensor. name: The name to give this op. Returns: Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.learn.monitors.ExportMonitor.every_n_step_begin()

tf.contrib.learn.monitors.ExportMonitor.every_n_step_begin(step) Callback before every n'th step begins. Args: step: int, the current value of the global step. Returns: A list of tensors that will be evaluated at this step.

tf.contrib.distributions.InverseGamma.beta

tf.contrib.distributions.InverseGamma.beta Scale parameter.

tensorflow::Tensor::unaligned_flat()

TTypes<T>::UnalignedFlat tensorflow::Tensor::unaligned_flat()

tf.ReaderBase.serialize_state()

tf.ReaderBase.serialize_state(name=None) Produce a string tensor that encodes the state of a reader. Not all Readers support being serialized, so this can produce an Unimplemented error. Args: name: A name for the operation (optional). Returns: A string Tensor.

tf.contrib.distributions.WishartCholesky.param_shapes()

tf.contrib.distributions.WishartCholesky.param_shapes(cls, sample_shape, name='DistributionParamShapes') Shapes of parameters given the desired shape of a call to sample(). Subclasses should override static method _param_shapes. Args: sample_shape: Tensor or python list/tuple. Desired shape of a call to sample(). name: name to prepend ops with. Returns: dict of parameter name to Tensor shapes.

tf.contrib.distributions.MultivariateNormalCholesky.sigma_det()

tf.contrib.distributions.MultivariateNormalCholesky.sigma_det(name='sigma_det') Determinant of covariance matrix.

tf.contrib.distributions.TransformedDistribution

class tf.contrib.distributions.TransformedDistribution A Transformed Distribution. A Transformed Distribution models p(y) given a base distribution p(x), an invertible transform, y = f(x), and the determinant of the Jacobian of f(x). Shapes, type, and reparameterization are taken from the base distribution.

tf.contrib.distributions.Chi2WithAbsDf.alpha

tf.contrib.distributions.Chi2WithAbsDf.alpha Shape parameter.

tf.contrib.distributions.Exponential.parameters

tf.contrib.distributions.Exponential.parameters Dictionary of parameters used by this Distribution.