tf.contrib.distributions.Multinomial.validate_args

tf.contrib.distributions.Multinomial.validate_args Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.ExponentialWithSoftplusLam.alpha

tf.contrib.distributions.ExponentialWithSoftplusLam.alpha Shape parameter.

tensorflow::TensorShapeUtils::IsMatrixOrHigher()

static bool tensorflow::TensorShapeUtils::IsMatrixOrHigher(const TensorShape &shape)

tf.contrib.distributions.MultivariateNormalFull.is_continuous

tf.contrib.distributions.MultivariateNormalFull.is_continuous

tf.contrib.learn.monitors.StepCounter.every_n_step_begin()

tf.contrib.learn.monitors.StepCounter.every_n_step_begin(step) Callback before every n'th step begins. Args: step: int, the current value of the global step. Returns: A list of tensors that will be evaluated at this step.

tf.contrib.distributions.Multinomial.is_reparameterized

tf.contrib.distributions.Multinomial.is_reparameterized

tf.contrib.distributions.Poisson.parameters

tf.contrib.distributions.Poisson.parameters Dictionary of parameters used by this Distribution.

tf.image.decode_jpeg()

tf.image.decode_jpeg(contents, channels=None, ratio=None, fancy_upscaling=None, try_recover_truncated=None, acceptable_fraction=None, name=None) Decode a JPEG-encoded image to a uint8 tensor. The attr channels indicates the desired number of color channels for the decoded image. Accepted values are: 0: Use the number of channels in the JPEG-encoded image. 1: output a grayscale image. 3: output an RGB image. If needed, the JPEG-encoded image is transformed to match the requested number of col

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.sigma

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.sigma Dense (batch) covariance matrix, if available.

tf.contrib.learn.DNNClassifier.weights_

tf.contrib.learn.DNNClassifier.weights_ DEPRECATED FUNCTION THIS FUNCTION IS DEPRECATED. It will be removed after 2016-10-13. Instructions for updating: This method inspects the private state of the object, and should not be used