tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.dtype

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.dtype The DType of Tensors handled by this Distribution.

tf.IdentityReader.serialize_state()

tf.IdentityReader.serialize_state(name=None) Produce a string tensor that encodes the state of a reader. Not all Readers support being serialized, so this can produce an Unimplemented error. Args: name: A name for the operation (optional). Returns: A string Tensor.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.sigma_det()

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.sigma_det(name='sigma_det') Determinant of covariance matrix.

tf.contrib.learn.DNNRegressor.get_params()

tf.contrib.learn.DNNRegressor.get_params(deep=True) Get parameters for this estimator. Args: deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns: params : mapping of string to any Parameter names mapped to their values.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.input_dict

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.input_dict

tf.contrib.distributions.Binomial.logits

tf.contrib.distributions.Binomial.logits Log-odds.

tf.contrib.distributions.Multinomial.validate_args

tf.contrib.distributions.Multinomial.validate_args Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.ExponentialWithSoftplusLam.alpha

tf.contrib.distributions.ExponentialWithSoftplusLam.alpha Shape parameter.

tensorflow::TensorShapeUtils::IsMatrixOrHigher()

static bool tensorflow::TensorShapeUtils::IsMatrixOrHigher(const TensorShape &shape)

tf.contrib.distributions.MultivariateNormalFull.is_continuous

tf.contrib.distributions.MultivariateNormalFull.is_continuous