tf.contrib.distributions.TransformedDistribution.log_pmf()

tf.contrib.distributions.TransformedDistribution.log_pmf(value, name='log_pmf') Log probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.allow_nan_stats

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.allow_nan_stats Python boolean describing behavior when a stat is undefined. Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Stud

tf.contrib.distributions.LaplaceWithSoftplusScale.log_pmf()

tf.contrib.distributions.LaplaceWithSoftplusScale.log_pmf(value, name='log_pmf') Log probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.distributions.WishartCholesky.allow_nan_stats

tf.contrib.distributions.WishartCholesky.allow_nan_stats Python boolean describing behavior when a stat is undefined. Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.clone()

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.clone(name=None, **dist_args)

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.dtype

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.dtype The DType of Tensors handled by this Distribution.

tensorflow::Thread::~Thread()

tensorflow::Thread::Thread()

tf.contrib.distributions.StudentT.log_pdf()

tf.contrib.distributions.StudentT.log_pdf(value, name='log_pdf') Log probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.distributions.NormalWithSoftplusSigma.log_pdf()

tf.contrib.distributions.NormalWithSoftplusSigma.log_pdf(value, name='log_pdf') Log probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.distributions.Poisson.get_batch_shape()

tf.contrib.distributions.Poisson.get_batch_shape() Shape of a single sample from a single event index as a TensorShape. Same meaning as batch_shape. May be only partially defined. Returns: batch_shape: TensorShape, possibly unknown.