tf.contrib.distributions.Bernoulli.log_prob()

tf.contrib.distributions.Bernoulli.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.StudentT.prob()

tf.contrib.distributions.StudentT.prob(value, name='prob') Probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.MultivariateNormalFull.event_shape()

tf.contrib.distributions.MultivariateNormalFull.event_shape(name='event_shape') Shape of a single sample from a single batch as a 1-D int32 Tensor. Args: name: name to give to the op Returns: event_shape: Tensor.

tf.contrib.distributions.Laplace.is_continuous

tf.contrib.distributions.Laplace.is_continuous

tf.contrib.distributions.NormalWithSoftplusSigma.param_static_shapes()

tf.contrib.distributions.NormalWithSoftplusSigma.param_static_shapes(cls, sample_shape) param_shapes with static (i.e. TensorShape) shapes. Args: sample_shape: TensorShape or python list/tuple. Desired shape of a call to sample(). Returns: dict of parameter name to TensorShape. Raises: ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Normal.param_static_shapes()

tf.contrib.distributions.Normal.param_static_shapes(cls, sample_shape) param_shapes with static (i.e. TensorShape) shapes. Args: sample_shape: TensorShape or python list/tuple. Desired shape of a call to sample(). Returns: dict of parameter name to TensorShape. Raises: ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Normal.get_event_shape()

tf.contrib.distributions.Normal.get_event_shape() Shape of a single sample from a single batch as a TensorShape. Same meaning as event_shape. May be only partially defined. Returns: event_shape: TensorShape, possibly unknown.

tf.contrib.learn.monitors.SummarySaver.step_begin()

tf.contrib.learn.monitors.SummarySaver.step_begin(step) Overrides BaseMonitor.step_begin. When overriding this method, you must call the super implementation. Args: step: int, the current value of the global step. Returns: A list, the result of every_n_step_begin, if that was called this step, or an empty list otherwise. Raises: ValueError: if called more than once during a step.

tf.contrib.metrics.streaming_sparse_recall_at_k()

tf.contrib.metrics.streaming_sparse_recall_at_k(*args, **kwargs) Computes recall@k of the predictions with respect to sparse labels. (deprecated arguments) SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-10-19. Instructions for updating: ignore_mask is being deprecated. Instead use weights with values 0.0 and 1.0 to mask values. For example, weights=tf.logical_not(mask). If class_id is specified, we calculate recall by considering only the entries in the batch for which class_id

tf.contrib.distributions.Uniform.a

tf.contrib.distributions.Uniform.a