tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.mean()

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.mean(name='mean')

tf.contrib.distributions.BernoulliWithSigmoidP.mode()

tf.contrib.distributions.BernoulliWithSigmoidP.mode(name='mode') Mode. Additional documentation from Bernoulli: Returns 1 if p > 1-p and 0 otherwise.

tf.contrib.distributions.MultivariateNormalDiag.log_survival_function()

tf.contrib.distributions.MultivariateNormalDiag.log_survival_function(value, name='log_survival_function') Log survival function. Given random variable X, the survival function is defined: log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ] Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1. Args: value: floa

tf.contrib.distributions.NormalWithSoftplusSigma.log_prob()

tf.contrib.distributions.NormalWithSoftplusSigma.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.Bernoulli.survival_function()

tf.contrib.distributions.Bernoulli.survival_function(value, name='survival_function') Survival function. Given random variable X, the survival function is defined: survival_function(x) = P[X > x] = 1 - P[X <= x] = 1 - cdf(x). Args: value: float or double Tensor. name: The name to give this op. Returns: Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Multinomial.log_pdf()

tf.contrib.distributions.Multinomial.log_pdf(value, name='log_pdf') Log probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.distributions.Bernoulli.log_prob()

tf.contrib.distributions.Bernoulli.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.StudentT.prob()

tf.contrib.distributions.StudentT.prob(value, name='prob') Probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.MultivariateNormalFull.event_shape()

tf.contrib.distributions.MultivariateNormalFull.event_shape(name='event_shape') Shape of a single sample from a single batch as a 1-D int32 Tensor. Args: name: name to give to the op Returns: event_shape: Tensor.

tf.contrib.distributions.Laplace.is_continuous

tf.contrib.distributions.Laplace.is_continuous