tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.loss()

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.loss(final_loss, name='Loss')

tf.contrib.distributions.InverseGamma.log_pdf()

tf.contrib.distributions.InverseGamma.log_pdf(value, name='log_pdf') Log probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.clone()

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.clone(name=None, **dist_args)

tf.contrib.learn.RunConfig.__init__()

tf.contrib.learn.RunConfig.__init__(master=None, task=None, num_ps_replicas=None, num_cores=0, log_device_placement=False, gpu_memory_fraction=1, cluster_spec=None, tf_random_seed=None, save_summary_steps=100, save_checkpoints_secs=600, keep_checkpoint_max=5, keep_checkpoint_every_n_hours=10000, job_name=None, is_chief=None, evaluation_master='') Constructor. If set to None, master, task, num_ps_replicas, cluster_spec, job_name, and is_chief are set based on the TF_CONFIG environment variable,

tf.contrib.distributions.Mixture.validate_args

tf.contrib.distributions.Mixture.validate_args Python boolean indicated possibly expensive checks are enabled.

tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.pushed_above()

tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.pushed_above(unused_value_type)

tf.contrib.distributions.Laplace.validate_args

tf.contrib.distributions.Laplace.validate_args Python boolean indicated possibly expensive checks are enabled.

tensorflow::Env::GetChildren()

Status tensorflow::Env::GetChildren(const string &dir, std::vector< string > *result) Stores in *result the names of the children of the specified directory. The names are relative to "dir". Original contents of *results are dropped.

tf.contrib.distributions.LaplaceWithSoftplusScale.param_static_shapes()

tf.contrib.distributions.LaplaceWithSoftplusScale.param_static_shapes(cls, sample_shape) param_shapes with static (i.e. TensorShape) shapes. Args: sample_shape: TensorShape or python list/tuple. Desired shape of a call to sample(). Returns: dict of parameter name to TensorShape. Raises: ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.learn.monitors.ValidationMonitor.run_on_all_workers

tf.contrib.learn.monitors.ValidationMonitor.run_on_all_workers