tf.SparseTensor.shape

tf.SparseTensor.shape A 1-D Tensor of int64 representing the shape of the dense tensor.

tf.contrib.distributions.MultivariateNormalCholesky.std()

tf.contrib.distributions.MultivariateNormalCholesky.std(name='std') Standard deviation.

tensorflow::PartialTensorShape::dim_sizes()

gtl::ArraySlice<int64> tensorflow::PartialTensorShape::dim_sizes() const Returns sizes of all dimensions.

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.__init__()

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.loss()

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.loss(final_loss, name='Loss')

tf.nn.rnn_cell.LSTMStateTuple.c

tf.nn.rnn_cell.LSTMStateTuple.c Alias for field number 0

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.log_pmf()

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.log_pmf(value, name='log_pmf') Log probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.distributions.NormalWithSoftplusSigma.mean()

tf.contrib.distributions.NormalWithSoftplusSigma.mean(name='mean') Mean.

tf.contrib.distributions.Chi2.log_pdf()

tf.contrib.distributions.Chi2.log_pdf(value, name='log_pdf') Log probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.distributions.WishartFull.allow_nan_stats

tf.contrib.distributions.WishartFull.allow_nan_stats Python boolean describing behavior when a stat is undefined. Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1