tensorflow::Tensor::FillDescription()

void tensorflow::Tensor::FillDescription(TensorDescription *description) const Fill in the TensorDescription proto with metadata about the tensor that is useful for monitoring and debugging.

tf.contrib.learn.monitors.ValidationMonitor.best_step

tf.contrib.learn.monitors.ValidationMonitor.best_step Returns the step at which the best early stopping metric was found.

tf.contrib.distributions.Laplace.parameters

tf.contrib.distributions.Laplace.parameters Dictionary of parameters used by this Distribution.

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.graph

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.graph

tf.nn.rnn_cell.LSTMStateTuple.__repr__()

tf.nn.rnn_cell.LSTMStateTuple.__repr__() Return a nicely formatted representation string

tf.contrib.distributions.WishartCholesky.name

tf.contrib.distributions.WishartCholesky.name Name prepended to all ops created by this Distribution.

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.name

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.name

tf.contrib.distributions.QuantizedDistribution.is_continuous

tf.contrib.distributions.QuantizedDistribution.is_continuous

tf.contrib.distributions.Chi2.mode()

tf.contrib.distributions.Chi2.mode(name='mode') Mode. Additional documentation from Gamma: The mode of a gamma distribution is (alpha - 1) / beta when alpha > 1, and NaN otherwise. If self.allow_nan_stats is False, an exception will be raised rather than returning NaN.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.mode()

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.mode(name='mode') Mode.