tf.contrib.learn.monitors.StepCounter.every_n_post_step()

tf.contrib.learn.monitors.StepCounter.every_n_post_step(step, session) Callback after a step is finished or end() is called. Args: step: int, the current value of the global step. session: Session object.

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.dtype

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.dtype

tf.contrib.distributions.TransformedDistribution.event_shape()

tf.contrib.distributions.TransformedDistribution.event_shape(name='event_shape') Shape of a single sample from a single batch as a 1-D int32 Tensor. Args: name: name to give to the op Returns: event_shape: Tensor.

tf.contrib.distributions.TransformedDistribution.batch_shape()

tf.contrib.distributions.TransformedDistribution.batch_shape(name='batch_shape') Shape of a single sample from a single event index as a 1-D Tensor. The product of the dimensions of the batch_shape is the number of independent distributions of this kind the instance represents. Args: name: name to give to the op Returns: batch_shape: Tensor.

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor

class tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor WishartFullTensor is a StochasticTensor backed by the distribution WishartFull.

tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.dtype

tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.dtype

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.mean()

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.mean(name='mean')

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.mean()

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.mean(name='mean')

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.name

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.name

tf.contrib.learn.monitors.LoggingTrainable.every_n_step_begin()

tf.contrib.learn.monitors.LoggingTrainable.every_n_step_begin(step)