tf.contrib.distributions.RegisterKL

class tf.contrib.distributions.RegisterKL Decorator to register a KL divergence implementation function. Usage: @distributions.RegisterKL(distributions.Normal, distributions.Normal) def _kl_normal_mvn(norm_a, norm_b): # Return KL(norm_a || norm_b)

tf.contrib.distributions.ExponentialWithSoftplusLam.__init__()

tf.contrib.distributions.ExponentialWithSoftplusLam.__init__(lam, validate_args=False, allow_nan_stats=True, name='ExponentialWithSoftplusLam')

tf.contrib.distributions.Exponential.parameters

tf.contrib.distributions.Exponential.parameters Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Chi2WithAbsDf.alpha

tf.contrib.distributions.Chi2WithAbsDf.alpha Shape parameter.

tf.ReaderBase.serialize_state()

tf.ReaderBase.serialize_state(name=None) Produce a string tensor that encodes the state of a reader. Not all Readers support being serialized, so this can produce an Unimplemented error. Args: name: A name for the operation (optional). Returns: A string Tensor.

tensorflow::Tensor::unaligned_flat()

TTypes<T>::UnalignedFlat tensorflow::Tensor::unaligned_flat()

tf.contrib.distributions.InverseGamma.beta

tf.contrib.distributions.InverseGamma.beta Scale parameter.

tf.contrib.learn.monitors.ExportMonitor.every_n_step_begin()

tf.contrib.learn.monitors.ExportMonitor.every_n_step_begin(step) Callback before every n'th step begins. Args: step: int, the current value of the global step. Returns: A list of tensors that will be evaluated at this step.

tf.contrib.distributions.WishartFull.batch_shape()

tf.contrib.distributions.WishartFull.batch_shape(name='batch_shape') Shape of a single sample from a single event index as a 1-D Tensor. The product of the dimensions of the batch_shape is the number of independent distributions of this kind the instance represents. Args: name: name to give to the op Returns: batch_shape: Tensor.

tf.contrib.distributions.Normal.param_shapes()

tf.contrib.distributions.Normal.param_shapes(cls, sample_shape, name='DistributionParamShapes') Shapes of parameters given the desired shape of a call to sample(). Subclasses should override static method _param_shapes. Args: sample_shape: Tensor or python list/tuple. Desired shape of a call to sample(). name: name to prepend ops with. Returns: dict of parameter name to Tensor shapes.