tf.contrib.distributions.MultivariateNormalFull.dtype

tf.contrib.distributions.MultivariateNormalFull.dtype The DType of Tensors handled by this Distribution.

tf.contrib.distributions.MultivariateNormalFull.cdf()

tf.contrib.distributions.MultivariateNormalFull.cdf(value, name='cdf') Cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: cdf(x) := P[X <= x] Args: value: float or double Tensor. name: The name to give this op. Returns: cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.MultivariateNormalFull.batch_shape()

tf.contrib.distributions.MultivariateNormalFull.batch_shape(name='batch_shape') Shape of a single sample from a single event index as a 1-D Tensor. The product of the dimensions of the batch_shape is the number of independent distributions of this kind the instance represents. Args: name: name to give to the op Returns: batch_shape: Tensor.

tf.contrib.distributions.MultivariateNormalFull.allow_nan_stats

tf.contrib.distributions.MultivariateNormalFull.allow_nan_stats Python boolean describing behavior when a stat is undefined. Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T

tf.contrib.distributions.MultivariateNormalFull

class tf.contrib.distributions.MultivariateNormalFull The multivariate normal distribution on R^k. This distribution is defined by a 1-D mean mu and covariance matrix sigma. Evaluation of the pdf, determinant, and sampling are all O(k^3) operations.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.validate_args

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.validate_args Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.variance()

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.variance(name='variance') Variance.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.__init__()

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.__init__(mu, diag_stdev, validate_args=False, allow_nan_stats=True, name='MultivariateNormalDiagWithSoftplusStdDev')

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.sigma_det()

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.sigma_det(name='sigma_det') Determinant of covariance matrix.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.std()

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.std(name='std') Standard deviation.