tf.contrib.layers.summarize_tensors()

tf.contrib.layers.summarize_tensors(tensors, summarizer=summarize_tensor) Summarize a set of tensors.

tf.contrib.distributions.Beta.event_shape()

tf.contrib.distributions.Beta.event_shape(name='event_shape') Shape of a single sample from a single batch as a 1-D int32 Tensor. Args: name: name to give to the op Returns: event_shape: Tensor.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.entropy()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.entropy(name='entropy')

tf.contrib.distributions.DirichletMultinomial.std()

tf.contrib.distributions.DirichletMultinomial.std(name='std') Standard deviation.

tf.contrib.distributions.QuantizedDistribution.is_reparameterized

tf.contrib.distributions.QuantizedDistribution.is_reparameterized

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.clone()

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.clone(name=None, **dist_args)

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.value()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.value(name='value')

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.graph

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.graph

tf.contrib.distributions.DirichletMultinomial.alpha

tf.contrib.distributions.DirichletMultinomial.alpha Parameter defining this distribution.

tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.graph

tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.graph