tf.contrib.learn.DNNRegressor.fit()

tf.contrib.learn.DNNRegressor.fit(x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None) See Trainable. Raises: ValueError: If x or y are not None while input_fn is not None. ValueError: If both steps and max_steps are not None.

tf.contrib.distributions.Mixture.cdf()

tf.contrib.distributions.Mixture.cdf(value, name='cdf') Cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: cdf(x) := P[X <= x] Args: value: float or double Tensor. name: The name to give this op. Returns: cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.DirichletMultinomial.param_shapes()

tf.contrib.distributions.DirichletMultinomial.param_shapes(cls, sample_shape, name='DistributionParamShapes') Shapes of parameters given the desired shape of a call to sample(). Subclasses should override static method _param_shapes. Args: sample_shape: Tensor or python list/tuple. Desired shape of a call to sample(). name: name to prepend ops with. Returns: dict of parameter name to Tensor shapes.

tf.contrib.distributions.MultivariateNormalFull.sample_n()

tf.contrib.distributions.MultivariateNormalFull.sample_n(n, seed=None, name='sample_n') Generate n samples. Args: n: Scalar Tensor of type int32 or int64, the number of observations to sample. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with a prepended dimension (n,). Raises: TypeError: if n is not an integer type.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.log_cdf()

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.log_cdf(value, name='log_cdf') Log cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: log_cdf(x) := Log[ P[X <= x] ] Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1. Args: value: float or double Tensor. name: The name to give this op. Returns: logcdf: a Tensor

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.log_pmf()

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.log_pmf(value, name='log_pmf') Log probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.value_type

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.value_type

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.sample()

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.sample(sample_shape=(), seed=None, name='sample') Generate samples of the specified shape. Note that a call to sample() without arguments will generate a single sample. Args: sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with prepended dimensions sample_shape.

tf.assert_rank()

tf.assert_rank(x, rank, data=None, summarize=None, message=None, name=None) Assert x has rank equal to rank. Example of adding a dependency to an operation: with tf.control_dependencies([tf.assert_rank(x, 2)]): output = tf.reduce_sum(x) Example of adding dependency to the tensor being checked: x = tf.with_dependencies([tf.assert_rank(x, 2)], x) Args: x: Numeric Tensor. rank: Scalar integer Tensor. data: The tensors to print out if the condition is False. Defaults to error message and fi

tf.contrib.learn.TensorFlowRNNClassifier

class tf.contrib.learn.TensorFlowRNNClassifier TensorFlow RNN Classifier model.